We have to get the stable atom formed after positron emission from Terbium-147.
The stable atom is (D) ₆₄Gd¹⁴⁷.
Positron is radioactive decay. Positron is a type of beta particle β⁺.
Positron emission decreases proton number relative to neutron number, positron decay results in nuclear transmutation, changing an atom of one chemical element with an atomic number that is less by one.
Terbium on positron emission produces Gadolinium with one atomic number less than Terbium. So, the positron emission reaction is as shown below:
Tb¹⁴⁷→ ₆₄Gd¹⁴⁷ + ₁e⁰
Answer:
2C3H8O + 9O2 ==> 6CO2 + 8H2O ... balanced equation
moles propanol = 5.26 g x 1 mol/60.1 g = 0.0875 moles
moles O2 = 31.8 g x 1 mol/31.9 g = 0.997 moles O2
Propanol is limiting based on the mol ratio in balance equation of 2 : 9
To find mass of O2 (excess reagent) left over, we will first find moles O2 used up.
moles O2 used = 0.0875 mol propanol x 9 mol O2/2 mol propanol = 0.394 moles O2 used
moles O2 left over = 0.997 mol - 0.394 mol = 0.603 mol O2 left
mass O2 left = 0.603 mol O2 x 32 g/mol = 19.3 g O2 left over
Answer : The value of equilibrium constant (Kc) is, 0.0154
Explanation :
The given chemical reaction is:

Initial conc.
0 0
At eqm.
x x
As we are given:
Concentration of
at equilibrium = 
That means,

The expression for equilibrium constant is:
![K_c=\frac{[SO_2][Cl_2]}{[SO_2Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BSO_2%5D%5BCl_2%5D%7D%7B%5BSO_2Cl_2%5D%7D)
Now put all the given values in this expression, we get:



Thus, the value of equilibrium constant (Kc) is, 0.0154
The unit expressed in 660 nm of light represents the wavelength of light. If you want to determine the frequency, you use the speed of light to relate the two. The formula is:
c = λν
where
λ is the wavelength
ν is the frequency
c is the speed of light = 3×10⁸ m
Apply SI units:
(3×10⁸ m) = (660×10⁻⁹ m)(ν)
Solving for ν,
<em>ν = 4.55×10¹⁴ s⁻¹</em>