Answer:
Light Exposure and Water Movement. Along with food, algae require the right amount of light to thrive. ... Filamentous algae will typically grow around the shoreline of a pond or lake because this is where the shallower water is.L
Hope that helps :)
Abhishek Singh present invention to provide
The reaction equation:
2Li + O → Li₂O
Molar ratio of Li to Li₂O is:
2 : 1
So if 3.03 moles of Li are present:
2/1 = 3.03 / x
x = 1.515 moles of Li₂O will be produced.
<span>34.2 grams
Lookup the atomic weights of the involved elements
Atomic weight potassium = 39.0983
Atomic weight Chlorine = 35.453
Atomic weight Oxygen = 15.999
Molar mass KClO3 = 39.0983 + 35.453 + 3 * 15.999 = 122.5483 g/mol
Moles KClO3 = 87.4 g / 122.5483 g/mol = 0.713188188 mol
The balanced equation for heating KClO3 is
2 KClO3 = 2 KCl + 3 O2
So 2 moles of KClO3 will break down into 3 moles of oxygen molecules.
0.713188188 mol / 2 * 3 = 1.069782282 mols
So we're going to get 1.069782282 moles of oxygen molecules. Since each molecule has 2 atoms, the mass will be
1.069782282 * 2 * 15.999 = 34.23089345 grams
Rounding the results to 3 significant figures gives 34.2 grams</span>
Answer:
Kp = 41.53
Kc = 1.01
Explanation:
To calculate the equilibrium constant in terms of pressure, what we simply do is to use the equilibrium pressure raised to the power of the number of moles. What we are saying in essence is this:
Kp = [NOCl]^2/[NO]^2[Cl]
Kp= [0.25]^2/[0.174][0.093]^2 = 41.53
Kp = Kc (RT)^Dn
Hence, Kc = Kp/[RT]^(delta n )^-1
n = sum of the number of moles of products minus the sum of the number of moles of reactants= 2-3 = -1 in this case
Kc = 41.53/(0.0821 * 500)^1
Kc = 1.01