The main functions of the cell wall are to provide structure, support, and protection for the cell.
You can determine the hazards of these chemicals by looking at their material data safety sheets (MSDS).
1. 0.1 M Ag⁺: Silver compounds are absorbed by skin causing bluish pigmentation. Thus, it <em>causes </em><span><em>staining on skin</em>.</span> Also, liquid <em>vapor may be irritating</em> to skin and also <em>moderately toxic when ingested</em>.
2. 0.1 M Ba²⁺: This is <em>mildly toxic when ingested</em> causing stomach irritation, muscle weakness, swelling of organs like brain, liver, kidney and heart.
3. 0.1 M Fe³⁺:Iron is <em>corrosive, has irritating vapor especially to the eyes, and toxic if ingested</em>.
4. 6 M HCl: This is a concentrated strong acid, so it is <em>corrosive, has irritating vapors, flammable and toxic when ingested</em>.
5. 6 M H₂SO₄: This is also a concentrated strong acid. Moreover, it is a strong oxidizing agent. So, its hazards include: <span><em>corrosive, has irritating vapors, toxic when ingested and causes staining on skin</em>.
</span>6. 6 M HNO₃: This is a concentrated strong acid, so it is <em>corrosive, has irritating vapors, flammable and toxic when ingested</em>.
7. 7.5 M NH₃: This is a weak base. It is characterized for its pungent odor. This is <em>corrosive, has irritating vapors, toxic if ingested, and flammable</em>.
You have already gotten the balanced equation. And the ratio of mol number of reactants and production is the ratio of coefficient. So there is 6.4/8*11=8.8 mol oxygen needed. The mass is 8.8*32=281.6 g.
We can explain this in a molecular level. We know that the difference between a gas and a liquid of the same composition is how fast their molecules are moving. So given a gas, their molecules are farther and faster when moving, but when they are cooled their bulk kinetic energy decreases. In other words their molecules start to move closer and move slower until it behaves more like a liquid molecule. This is the time when gases condense.
Answer:
Relative and average atomic mass both describe properties of an element related to its different isotopes.
Explanation:However, relative atomic mass is a standardized number that's assumed to be correct under most circumstances, while average atomic mass is only true for a specific sample.