Speed = distance / time
S= 40 000m / 5400s
S= 7.41m/s
The Gay-Lussac's law or Amonton's law states that the pressure of a given amount of a gas is directly propotional to its temperature if its volume is kept constant .
P∝T
and
The Charles Law states that volume of given amount of gas at constant pressure is directly propotional to temperature.
V∝T
So, by Gay-Lussac's law if we increase the temperature the Pressure will increase and by Charles Law, if we increase the temperature the volume will increase.
Therefore, if the temperature of gas increases either the pressure of the gas, the volume of the gas, or both, will increase.
Hence,
Answer is option C
Answer: 3 m.
Explanation:
Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by gravity acting on both children must be 0.
As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.
If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):
mJill* 5m -mJack* d = 0
60 kg*5 m -100 kg* d =0
Solving for d:
d = 3 m.
Answer:
3.25 × 10^7 m/s
Explanation:
Assuming the electrons start from rest, their final kinetic energy is equal to the electric potential energy lost while moving through the potential difference (ΔV)
Ek = 1/2 mv2 = qΔV .................. 1
Given that V is the electron speed in m/s
Charge of electron = 1.60217662 × 10-19 coulombs
Mass of electron = 9.109×10−31 kilograms
ΔV = 3.0kV = 3000V
Make V the subject of the formula in eqaution 1
V = sqr root 2qΔV/m
V = 2 × 1.60217662 × 10-19 × 3000 / 9.109×10−31
V = 3.25 × 10^7 m/s
The image distance can be determined using the mirror equation: 1/f = 1/d_o + 1/d_i, where, f is the focal length, d_o is the object distance, and d_i is the image distance. Given that f = 28.2 and d_o = 33.2 cm, the value of d_i is calculated to be 187.248 cm. On the other hand, the image height is obtained using the magnification equation wherein, h_i/h_o = -d_i/d_o, where h_i is the image height and h_o is the object height. Using the given values, h_i is equal to -26.79 cm. Note that the negative sign indicates that the image is inverted.