Answer: q2 = -0.05286
Explanation:
Given that
Charge q1 = - 0.00325C
Electric force F = 48900N
The electric field strength experienced by the charge will be force per unit charge. That is
E = F/q
Substitute F and q into the formula
E = 48900/0.00325
E = 15046153.85 N/C
The value of the repelled second charge will be achieved by using the formula
E = kq/d^2
Where the value of constant
k = 8.99×10^9Nm^2/C^2
d = 5.62m
Substitutes E, d and k into the formula
15046153.85 = 8.99×10^9q/5.62^2
15046153.85 = 284634186.5q
Make q the subject of formula
q2 = 15046153.85/ 28463416.5
q2 = 0.05286
Since they repelled each other, q2 will be negative. Therefore,
q2 = -0.05286
Answer:
(4xy+5ab)(4xy-5ab)
Explanation:
16
-25

4^2 is 16 and 5^2 is 25,
Also, (x-a)(x+a) = x^2-a^2
So, this factorized is:
(4xy+5ab)(4xy-5ab)
Hope this helps!
Answer:
Fossil-fueled cars are still outnumbering the alternative and replacement-fueled cars because they are generally cost-effective and are efficient.
Explanation:
<em>Fossil fuels</em> are non-renewable energy that cannot be replenished. Although many people know how harmful using them can be to the environment, still, people continue to buy cars that are powered by it. This is because, <em>using fossil-fueled cars can help you save money</em> compared to using<em> replacement-fueled cars.</em><em> Its engines are also more powerful,</em> which means they can arrive at their destination in just a few minutes. <u>This makes it efficient.</u> The cost of maintaining a fossil-fueled car is less expensive compared to<em> replacement-fueled cars.</em> People are naturally keen when it comes to budgeting, thus, many people still buy cars powered by fossil fuels.
Answer:

Explanation:
GIVEN
diameter = 15 fm =
m
we use here energy conservation

there will be some initial kinetic energy but after collision kinetic energy will zero

on solving these equations we get kinetic energy initial
J ..............(i)
That is, the alpha particle must be fired with 35.33 MeV of kinetic energy. An alpha particle with charge q = 2 e
and gains kinetic energy K =e∆V ..........(ii)
by accelerating through a potential difference ∆V
Thus the alpha particle will
just reach the
nucleus after being accelerated through a potential difference ∆V
equating (i) and second equation we get
e∆V = 35.33 Me V

Answer:
z = 3,737 10⁵ m
Explanation:
a) As they indicate that the atmosphere behaves like an ideal gas, we can use the equation
P V = n R T
P = (n r / V) T
We replace
P = (n R / V) T₀
b) Let's apply this equation in the points
Lower
.z = 0
P₀ = 610 Pa
P₀ = (nR / V) T₀
Higher.
P = 10 Pa
P = (n R / V) T₀ e^{- C z}
We replace
P = P₀ e^{- C z}
e^{- C z} = P / P₀
C z = ln P₀ / P
z = 1 / C ln P₀ / P
Let's calculate
z = 1 / 1.1 10⁻⁵ ln (610/10)
z = 3,737 10⁵ m