Complete Question
A wave is described by y(x,t) = 0.1 sin(3x + 10t), where x is in meters, y is in centimetres and t is in seconds. The angular wave frequency is
Answer:
The value is 
Explanation:
From the question we are told that
The equation describing the wave is y(x,t) = 0.1 sin(3x + 10t)
Generally the sinusoidal equation representing the motion of a wave is mathematically represented as

Where w is the angular frequency
Now comparing this equation with that given we see that

Answer:
0.84
Explanation:
m = Massa balok
g = Percepatan gravitasi
= Sudut kemiringan
= Koefisien gesekan statik antara balok dan bidang miring
Gaya balok karena beratnya diberikan oleh

Gaya gesekan diberikan oleh

Kondisi dimana balok mulai bergerak adalah ketika gaya balok akibat beratnya sama dengan gaya gesek pada balok.

Koefisien gesekan statik antara balok dan bidang miring adalah 0.84.
Answer:
velocity at the top: 0 m/s
acceleration at the top: -9.8 m/s²
Explanation:
Assuming up is positive and down is negative;
The velocity of the ball at the top of its path will be 0 m/s and the acceleration will be negative.
The velocity is 0 m/s because the ball does not move at the top of its path, and it switches from a positive velocity to a negative velocity. It must go through 0 in order to go from positive to negative.
The acceleration, however, is always negative no matter where the ball is in its motion. This negative acceleration causes the ball to slow down as it reaches the top, and speed up as it reaches the bottom.
<u>Think about it:</u> If there wasn't a negative acceleration, and it was instead 0, the ball would never come back down and instead keep going in a straight line.
<h3>
Answer:</h3>
Momentum of the given body will be : 75000 Kg m/s
<h3>
Explanation:</h3>
According to Newton's first law of motion, all bodies continue to be in the state of rest or motion unless an external force is applied on the body. We can use this in the case of momentum also
The formula of momentum is given by :

Here, we are given the mass of the body ( m ) as 3000kg and the velocity of the body ( v ) as 25 m/s. On putting the values in the formula:

Momentum is associated with the mass of the moving body and can be defined as the quantity of motion measured as a product of mass and velocity.
Acceleration = (change in speed) / (time for the change)
= (49 m/s) / (5 seconds)
= (49 / 5) m/s / s
= 9.8 m/s²