Concrete is not a polymer which Nylon, and Kevlar are
Answer and Explanation:
If the ant was to crawl 50cm to the right, then come back 30 cm, then the total distance walked would be <u>80cm</u>.
- Combine 50cm and 30cm to get 80 cm.
For displacement, the answer is <u>20 cm.</u>
- When calculating displacement, you use the initial (starting) distance. and subtract that from the final distance, giving you the displacement, or the amount traveled from the starting point to the final point if you were to make a straight line from the starting point to end point. (0 to 50, then back 30 the same direction, so subtract 30 from 50 to get 20)
<em><u>#teamtrees #PAW (Plant And Water)</u></em>
<em><u>I hope this helps!</u></em>
Answer:
0.72 Hz minimum frequency
Explanation:
When the damping is negligible,Amplitude is given as

here
= (6.30)/(0.135) = 46.67 N/m kg
= 1.70/(0.135)(0.480) = 26.2 N/m kg
From the above equation , rearranging for ω,

⇒ ω² =46.67 ± 26.2 = 72.87 or 20.47
⇒ ω = 8.53 or 4.52 rad/s
Frequency = f
ω=2 π f
⇒ f = ω / 2π = 8.53 /6.28 or 4.52 / 6.28 = 1.36 Hz or 0.72 Hz
The lower frequency is 0.72 Hz and higher is 1.36 Hz
Explanation:
<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>A</u><u>:</u>
Let the x-axis be (+) towards the right and y-axis be (+) in the upward direction. We can write the net forces on mass
as


Substituting (2) into (1), we get

where
, the frictional force on
Set this aside for now and let's look at the forces on 
<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>B</u><u>:</u>
Let the x-axis be (+) up along the inclined plane. We can write the forces on
as


From (5), we can solve for <em>N</em> as

Set (6) aside for now. We will use this expression later. From (3), we can see that the tension<em> </em><em>T</em><em> </em> is given by

Substituting (7) into (4) we get

Collecting similar terms together, we get

or
![a = \left[ \dfrac{m_B\sin30 - \mu_km_A}{(m_A + m_B)} \right]g\:\:\:\:\:\:\:\:\:(8)](https://tex.z-dn.net/?f=a%20%3D%20%5Cleft%5B%20%5Cdfrac%7Bm_B%5Csin30%20-%20%5Cmu_km_A%7D%7B%28m_A%20%2B%20m_B%29%7D%20%5Cright%5Dg%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%288%29)
Putting in the numbers, we find that
. To find the tension <em>T</em>, put the value for the acceleration into (7) and we'll get
. To find the force exerted by the inclined plane on block B, put the numbers into (6) and you'll get 