In order to describe motion along a straight line, you must state the speed and direction of the motion. Those two quantities, together, comprise what's known as "velocity".
The equation for electrical power is<span>P=VI</span>where V is the voltage and I is the current. This can be rearranged to solve for I in 6(a).
6(b) can be solved with Ohm's Law<span>V=IR</span>or if you'd like, from power, after substituting Ohm's law in for I<span>P=<span><span>V2</span>R</span></span>
For 7, realize that because they are in parallel, their voltages are the same.
We can find the resistance of each lamp from<span>P=<span><span>V2</span>R</span></span>Then the equivalent resistance as<span><span>1<span>R∗</span></span>=<span>1<span>R1</span></span>+<span>1<span>R2</span></span></span>Then the total power as<span><span>Pt</span>=<span><span>V2</span><span>R∗</span></span></span>However, this will reveal that (with a bit of algebra)<span><span>Pt</span>=<span>P1</span>+<span>P2</span></span>
For 8, again the resistance can be found as<span>P=<span><span>V2</span>R</span></span>The energy usage is simply<span><span>E=P⋅t</span></span>
Let the data is as following
mass of payload = "m"
mass of Moon = "M"
now we know that we place the payload from the position on the surface of moon to the position of 5r from the surface
So in this case we can say that change in the gravitational potential energy is equal to the work done to move the mass from one position to other
so it is given by

we know that


now from above formula


so above is the work done to move the mass from surface to given altitude
Answer:
it have two answers a and c
Explanation:
please mark me as brainlyst
Answer:
A:7.2
B:14.25
C:1.45
D:10.3
E:2.9
F:20.88
Explanation:
Let
be the velocity and
be the angle between the velocity and ground.
Question A:
Horizontal component of velocity is given by
.
So,horizontal component is 
Question B:
Vertical component of velocity is given by
.
So,vertical component is 
Question C:
Time required is given by 
Question D:
Maximum height is given by 
Question E:
Time of flight is twice the time required to reach maximum height=
.
Question F:
The distance between the player and ball after landing is called range and is given by 
