Answer:
1. 610,000 lb ft
2. 490 J
Explanation:
1. First, convert mi/hr to ft/s:
100 mi/hr × (5280 ft / mi) × (1 hr / 3600 s) = 146.67 ft/s
Now find the kinetic energy:
KE = ½ mv²
KE = ½ (1825 lb / 32.2 ft/s²) (146.67 ft/s)²
KE = 610,000 lb ft
2. KE = ½ mv²
KE = ½ (5 kg) (14 m/s)²
KE = 490 J
The gravitational constant was experimentally measured by W Cavendish using the attraction between big and small lead balls. is true
The correct answer is true
<h3>How do you define gravitational constant?</h3>
the strength of gravity. a factor in use in Newton's gravity law to relate the strength of the gravitational pull between two bodies with their masses and distance from one another. 6.67259 X 10-11 newtons per square kilogram is roughly the gravitational constant. G is its identifier.
<h3> where is the strongest gravity is?</h3>
The gravitational pull of the earth is greatest near sea level, normally, and weakens as you get further from the center, such as to the summit of Mt. Everest. Because the obloid earth was slightly wider, but only by a minor ratio, the gravity just at poles is stronger than that at the equator.
To know more about gravitational constant visit:
brainly.com/question/858421
#SPJ9
<h3>
Answer: 22.5 m/s</h3>
=====================================================
Work Shown:
acceleration = ( finalVelocity - initialVelocity )/(change in time)
1.5 = (60 - x)/(25)
1.5*25 = 60-x
37.5 = 60-x
x = 60-37.5
x = 22.5
The initial velocity is 22.5 m/s
It would be C as the law says "<span>Formally stated, </span>Newton's third law<span> is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object."</span>