The maximum theoretical efficiency of the system is the one corresponding to the efficiency of a Carnot cycle operating between the same temperatures of the system:

where

and

are the cold and hot temperatures, respectively.
In our problem,

and

, therefore the maximum theoretical efficiency is

So, 33%.
First convert the speed of mosquito to m/s:
So the mosquito is flying at (2,400/3,600) m/s,
or ⅔ m/s.
<span>
Since you are moving at 2m/s, so this makes the closing
velocity between you and the mosquito to be 2⅔ m/s. </span>
Therefore the mosquito will hit your sunglasses at:<span>
35 m / (2⅔ m/s) = 13⅛ seconds.
2.0 m/s * 13⅛ s = 26¼ m from your initial position.
<span>⅔ m/s * 13⅛ s = 8¾ m from the mosquito's initial position. </span></span>
Answer:
+1.46×10¯⁶ C
Explanation:
From the question given above, the following data were obtained:
Charge 1 (q₁) = +26.3 μC = +26.3×10¯⁶ C
Force (F) = 0.615 N
Distance apart (r) = 0.750 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Charge 2 (q₂) =?
The value of the second charge can be obtained as follow:
F = Kq₁q₂ / r²
0.615 = 9×10⁹ × 26.3×10¯⁶ × q₂ / 0.750²
0.615 = 236700 × q₂ / 0.5625
Cross multiply
236700 × q₂ = 0.615 × 0.5625
Divide both side by 236700
q₂ = (0.615 × 0.5625) / 236700
q₂ = +1.46×10¯⁶ C
NOTE: The force between them is repulsive as stated from the question. This means that both charge has the same sign. Since the first charge has a positive sign, the second charge also has a positive sign. Thus, the value of the second charge is +1.46×10¯⁶ C