1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
REY [17]
3 years ago
13

6th grade science pls help

Physics
1 answer:
oee [108]3 years ago
6 0

Answer:

D

Explanation:

I hope you get a good grade!

You might be interested in
Which form of
Soloha48 [4]
I think it’s C b/c it works for me
3 0
3 years ago
A car has a mass of 1000 kg and accelerates at 2 m/s2. What net force is exerted on the car?
prisoha [69]

Answer:

1000N

Explanation:

Based on force=mass*acceleration, if the acceleration is constant at 2 metres per second squared, 1,000kg*2m/s^2=2,000N of force.

If the acceleration steadily increases to 2m/s^2 in 20 seconds, take the average which is 1m/s^2 therefore force=1,000N

6 0
3 years ago
A 27-g steel-jacketed bullet is fired with a velocity of 640 m/s toward a steel plate and ricochets along path CD with a velocit
Dmitry [639]

Answer:

F = - 3.56*10⁵ N

Explanation:

To attempt this question, we use the formula for the relationship between momentum and the amount of movement.

I = F t = Δp

Next, we try to find the time that the average speed in the contact is constant (v = 600m / s), so we say

v = d / t

t = d / v

Given that

m = 26 g = 26 10⁻³ kg

d = 50 mm = 50 10⁻³ m

t = d/v

t = 50 10⁻³ / 600

t = 8.33 10⁻⁵ s

F t = m v - m v₀

This is so, because the bullet bounces the speed sign after the crash is negative

F = m (v-vo) / t

F = 26*10⁻³ (-500 - 640) / 8.33*10⁻⁵

F = - 3.56*10⁵ N

The negative sign is as a result of the force exerted against the bullet

6 0
2 years ago
Classes are canceled due to snow, so you take advantage of the extra time to conduct some physics experiments. You fasten a larg
IRINA_888 [86]

Answer:

Time : <u>7.96 s</u>

Distance Traveled : <u>357.8 m</u>  

Explanation:

In order to solve this problem, we first consider the accelerated motion of rocket. We will be using the subscript 1 for accelerated motion.

So, for accelerated motion, we have:

Acceleration = a₁ = 14.5 m/s²

Time Period = t₁ = 3.1 s

Initial Velocity = Vi₁ = 0 m/s    (Since, it starts from rest)

Final Velocity = Vf₁

Distance covered by sled during acceleration motion = s₁

Now, using 1st equation of motion:

Vf₁ = Vi₁ + (a₁)(t₁)

Vf₁ = 0 m/s + (14.5 m/s²)(3.1 s)

Vf₁ = 44.95 m/s

Now, using 2nd equation of motion:

s₁ = (Vi₁)(t) + (0.5)(a₁)(t₁)

s₁ = (0 m/s)(3.1 s) + (0.5)(14.5 m/s²)(3.1 s)

s₁ = 22.5 m

Now, we first consider the decelerated motion of rocket. We will be using the subscript 2 for decelerated motion.

So, for accelerated motion, we have:

Deceleration = a₂ = - 5.65 m/s²

Time Period = t₂ = ?

Initial Velocity = Vi₂ = Vf₁ = 44.95 m/s    (Since, decelerate motion starts, where accelerated motion ends)

Final Velocity = Vf₂ = 0 m/s    (Since, rocket will eventually stop)

Distance covered by sled during deceleration motion = s₂

Now, using 1st equation of motion:

Vf₂ = Vi₂ + (a₂)(t₂)

0 m/s = 44.95 m/s + (- 5.65 m/s²)(t₂)

t₂ = (44.95 m/s)/(5.65 m/s²)

<u>t₂ = 7.96 s</u>

Now, using 2nd equation of motion:

s₂ = (Vi₂)(t₂) + (0.5)(a₂)(t₂)

s₂ = (44.95 m/s)(7.96 s) + (0.5)(- 5.65 m/s²)(7.96 s)

s₂ = 357.8 m - 22.5 m

s₂ = 335.3 m

Thus, the total distance covered by sled will be:

Total Dustance = S = s₁ + s₂

S = 22.5 m + 335.3 m

<u>S = 357.8 m</u>

7 0
3 years ago
6) Find the speed a spherical raindrop would attain by falling from 4.00 km. Do this:a) In the absence of air dragb) In the pres
sleet_krkn [62]

We are asked to determine the velocity of a rain drop if it falls from 4 km.

To do that we will use the following formula:

2ah=v_f^2-v_0^2

Where:

\begin{gathered} a=\text{ acceleration} \\ h=\text{ height} \\ v_f,v_0=\text{ final and initial velocity} \end{gathered}

If we assume the initial velocity to be 0 we get:

2ah=v_f^2

The acceleration is the acceleration due to gravity:

2gh=v_f^2

Now, we take the square root to both sides:

\sqrt{2gh}=v_f

Now, we substitute the values:

\sqrt{2(9.8\frac{m}{s^2})(4000m)}=v_f

solving the operations:

280\frac{m}{s}=v

Therefore, the velocity without air drag is 280 m/s.

Part B. we are asked to determine the velocity if there is air drag. To do that we will use the following formula:

F_d=\frac{1}{2}C\rho_{air}Av^2

Where:

\begin{gathered} F_d=drag\text{ force} \\ C=\text{ constant} \\ \rho_{air}=\text{ density of air} \\ A=\text{ area} \\ v=\text{ velocity} \end{gathered}

We need to determine the drag force. To do that we will use the following free-body diagram:

Since the velocity that the raindrop reaches is the terminal velocity and its a constant velocity this means that the acceleration is zero and therefore the forces are balanced:

F_d=mg

Now, we determine the mass of the raindrop using the following formula:

m=\rho_{water}V

Where:

\begin{gathered} \rho_{water}=\text{ density of water} \\ V=\text{ volume} \end{gathered}

The volume is the volume of a sphere, therefore:

m=\rho_{water}(\frac{4}{3}\pi r^3)

Since the diameter of the raindrop is 3 millimeters, the radius is 1.5 mm or 0.0015 meters. Substituting we get:

m=(0.98\times10^3\frac{kg}{m^3})(\frac{4}{3}\pi(0.0015m)^3)

Solving the operations:

m=1.39\times10^{-5}kg

Now, we substitute the values in the formula for the drag force:

F_d=(1.39\times10^{-5}kg)(9.8\frac{m}{s^2})

Solving the operations:

F_d=1.36\times10^{-4}N

Now, we substitute in the formula:

1.36\times10^{-4}N=\frac{1}{2}C\rho_{air}Av^2

Now, we solve for the velocity:

\frac{1.36\times10^{-4}N}{\frac{1}{2}C\rho_{air}A}=v^2

Now, we substitute the values. We will use the area of a circle:

\frac{1.36\times10^{-4}N}{\frac{1}{2}(0.45)(1.21\frac{kg}{m^3})(\pi r^2)}=v^2

Substituting the radius:

\frac{1.36\cdot10^{-4}N}{\frac{1}{2}(0.45)(1.21\frac{kg}{m^{3}})(\pi(0.0015m)^2)}=v^2

Solving the operations:

70.67\frac{m^2}{s^2}=v^2

Now, we take the square root to both sides:

\begin{gathered} \sqrt{70.67\frac{m^2}{s^2}}=v \\  \\ 8.4\frac{m}{s}=v \\  \end{gathered}

Therefore, the velocity is 8.4 m/s

7 0
1 year ago
Other questions:
  • The Moon and Earth rotate about their common center of mass, which is located about RcM 4700 km from the center of Earth. (This
    7·1 answer
  • Is number six correct? If so why???
    12·1 answer
  • A 0.25-kg coffee mug is made from a material that has a specific heat capacity of 950 J/(kg · C°) and contains 0.30 kg of water.
    6·1 answer
  • Gravitational Acceleration inside a Planet
    6·1 answer
  • Suppose you have two identical sheets of paper and you crumple one of the sheets of paper into a ball. If you drop the crumpled
    5·1 answer
  • In a free fall experimate you determine the value of acceleration due to gravity (g) to be 9.50 m/s2 . The accepted value is 9.8
    9·1 answer
  • A block of an unknown metal has a mass of 227.8 kg and a volume of 0.1189 cubic meters. If the object were a sphere, what would
    15·1 answer
  • While a roofer is working on a roof that slants at 37.0 ∘∘ above the horizontal, he accidentally nudges his 92.0 NN toolbox, cau
    9·1 answer
  • How fast must a 1000 kg car be moving to have a kinetic energy of 2.0×10^5j​
    5·1 answer
  • If a student weighs 100 pounds on Earth, how much more or less would she weigh on Pluto than Mars?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!