Answer:
360N
Explanation:
The frictional force = centripetal force = mass * centripetal acceleration = ma
Since centripetal acceleration = V^2/ r
Frictional force = mv^2 / r
Substitute the values of m = 80kg, radius = 2m and tangential speed = 3m/s
Frictional force = 80 * (3)^2/ 2 = 360N
125 b
simultaneous kinematic equations two variables are F and stopping distance
Ball thrown into the air at an angle.
Answer:
Point A
Explanation:
The work done by stretching or compressing a spring is given by E=1/2kx²
The potential energy is numerically equal to the work done.
This means that the higher the bigger the value of the extension, x, the higher the energy contained.
In this scenario the modulus of x is considered.
Among the given values of x the modulus of -5 is the largest.
thus it gives the highest value of energy.
Answer:
(A) Distance will be equal to 1.75 km
(B) Displacement will be equal to 1.114 km
Explanation:
We have given circumference of the circular track = 3.5 km
Circumference is given by 
r = 0.557 km
(a) It is given that car travels from southernmost point to the northernmost point.
For this car have to travel the distance equal to semi perimeter of the circular track
So distance will be equal to 
(b) If car go along the diameter of the circular track then it will also go from southernmost point to the northernmost point. and it will be equal to diameter of the track
So displacement will be equal to d = 2×0.557 = 1.114 m