Answer:
13.85 kJ/°C
-14.89 kJ/g
Explanation:
<em>At constant volume, the heat of combustion of a particular compound, compound A, is − 3039.0 kJ/mol. When 1.697 g of compound A (molar mass = 101.67 g/mol) is burned in a bomb calorimeter, the temperature of the calorimeter (including its contents) rose by 3.661 °C. What is the heat capacity (calorimeter constant) of the calorimeter? </em>
<em />
The heat of combustion of A is − 3039.0 kJ/mol and its molar mass is 101.67 g/mol. The heat released by the combustion of 1.697g of A is:

According to the law of conservation of energy, the sum of the heat released by the combustion and the heat absorbed by the bomb calorimeter is zero.
Qcomb + Qcal = 0
Qcal = -Qcomb = -(-50.72 kJ) = 50.72 kJ
The heat capacity (C) of the calorimeter can be calculated using the following expression.
Qcal = C . ΔT
where,
ΔT is the change in the temperature
Qcal = C . ΔT
50.72 kJ = C . 3.661 °C
C = 13.85 kJ/°C
<em>Suppose a 3.767 g sample of a second compound, compound B, is combusted in the same calorimeter, and the temperature rises from 23.23°C to 27.28 ∘ C. What is the heat of combustion per gram of compound B?</em>
Qcomb = -Qcal = -C . ΔT = - (13.85 kJ/°C) . (27.28°C - 23.23°C) = -56.09 kJ
The heat of combustion per gram of B is:

Answer:
3 : 1
Explanation:
Let the rate of He be R1
Molar Mass of He (M1) = 4g/mol
Let the rate of O2 be R2
Molar Mass of O2 (M2) = 32g/mol
Recall:
R1/R2 = √(M2/M1)
R1/R2 = √(32/4)
R1/R2 = √8
R1/R2 = 3
The ratio of rate of effusion of Helium to oxygen is 3 : 1
Answer:
The law is observed in the given equation.
Explanation:
CaCO₃ + 2HCI → CaCI₂ +H₂O + CO₂
In order to find out if the law of conservative mass is followed, we need to <u>count how many atoms of each element are there in both sides of the equation</u>:
- Ca ⇒ 1 on the left, 1 on the right.
- C ⇒ 1 on the left, 1 on the right.
- O ⇒ 3 on the left, 3 on the right.
- H ⇒ 2 on the left, 2 on the right.
- Cl ⇒ 2 on the left, 2 on the right.
As the numbers for all elements involved are the same, the law is observed in the given equation.
The reactants are oxygen and nitrogen monoxide.
<h3>What is nitrogen monoxide?</h3>
Nitrogen oxide, also known as nitrogen monoxide or nitric oxide, is an inert gas with the chemical formula NO. It is one of the main nitrogen oxides. Free radical nitric oxide (•N=O or •NO) possesses an unpaired electron, which is commonly indicated by a dot in its chemical formula. As a heteronuclear diatomic molecule, nitric oxide also contributed to the development of early modern theories of chemical bonding.
Nitric oxide is a chemical compound that occurs in combustion systems and can be produced by lightning during thunderstorms. It is a crucial intermediate in industrial chemistry. In many physiological and pathological processes in animals, including humans, nitric oxide serves as a signaling molecule.
To learn more about nitrogen monoxide from the given link:
brainly.com/question/13428103
#SPJ4
Answer:
The boiling point decreases as the volume decreases.
Explanation:
The Temperature - Volume law otherwise called as Charles law is applied, which says that the volume of the given gas at constant pressure is directly proportional to the temperature measured in Kelvin. As the volume increases, the temperature also increases, if the volume decreases, then the temperature also decreases.
As per the Charles law, here the volume is decreased from 50 ml to 25 ml so the boiling point also decreases.