Answer:
If you know the total current and the voltage across the whole circuit, you can find the total resistance using Ohm's Law: R = V / I. For example, a parallel circuit has a voltage of 9 volts and total current of 3 amps. The total resistance RT = 9 volts / 3 amps = 3 Ω.
Explanation:
The magnitudes of the forces that the ropes must exert on the knot connecting are :
- F₁ = 118 N
- F₂ = 89.21 N
- F₃ = 57.28 N
<u>Given data :</u>
Mass ( M ) = 12 kg
∅₂ = 63°
∅₃ = 45°
<h3>Determine the magnitudes of the forces exerted by the ropes on the connecting knot</h3><h3 />
a) Force exerted by the first rope = weight of rope
∴ F₁ = mg
= 12 * 9.81 ≈ 118 kg
<u>b) Force exerted by the second rope </u>
applying equilibrium condition of force in the vertical direction
F₂ sin∅₂ + F₃ sin∅₃ - mg = 0 ---- ( 1 )
where: F₃ = ( F₂ cos∅₂ / cos∅₃ ) --- ( 2 ) applying equilibrium condition of force in the horizontal direction
Back to equation ( 1 )
F₂ = [ ( mg / cos∅₂ ) / tan∅₂ + tan∅₃ ]
= [ ( 118 / cos 63° ) / ( tan 63° + tan 45° ) ]
= 89.21 N
<u />
<u>C ) </u><u>Force </u><u>exerted by the</u><u> third rope </u>
Applying equation ( 2 )
F₃ = ( F₂ cos∅₂ / cos∅₃ )
= ( 89.21 * cos 63 / cos 45 )
= 57.28 N
Hence we can conclude that The magnitudes of the forces that the ropes must exert on the knot connecting are :
F₁ = 118 N, F₂ = 89.21 N, F₃ = 57.28 N
Learn more about static equilibrium : brainly.com/question/2952156
DaddyFed is right, it would be all of them.
Answer:
W and X
Explanation:
When escaping a rip current, one should always walk to the side until you escape from the rip current. If you walk towards the shore, you have the ability to keep getting dragged toward the current, such as with X and Y.
Answer:
Answer:
4 ms
Explanation:
initial velocity, u = 75 m/s
final velocity, v = 0
distance, s = 15 cm = 0.15 m
Let the acceleration is a and the time taken is t.
Use third equation of motion
v² = u² + 2 a s
0 = 75 x 75 - 2 a x 0.15
a = - 18750 m/s^2
Use first equation of motion
v = u + at
0 = 75 - 18750 x t
t = 4 x 10^-3 s
t = 4 ms
thus, the time taken is 4 ms.
Explanation: