Speed of any freely falling object is always same. Provided, both are left to fall from the same height. If you perform this experiment in a perfect vacuum or near vacuum laboratory, both of them will reach ground with same velocity this is because there is no resistance to their motion. This is always true no matter where you go and perform this experiment.
It can be easily proved from conservation of mechanical energy. Why conserving energy? because there are no forces acting on the freely falling objects other than conservative force(mg).
Answer: D. It is a SUSPENSION
Explanation:
SUSPENSION
This is a combination of two or more single substances. The properties of the components involved are not however changed or lost as is the case with compounds.
For this reason this mixture can be separated due to sedimentation or filtering.
After a few days, this occurs in the aqueous nickel sulfide because the solid nickel sulfide is separating from the water.
Answer:
The force exerted by the rope on her arms is 273.7 N = 0.274 kN
Explanation:
Step 1: Data given
Mass of the ice skater = 55.6 kg
Velocity = 1.73 m/s
She then moves in a circle of radius 0.608 m around the pole.
Step 2:
Force exterted by the horizontal rope is the centripetal force acting on theice skater:
Fc = M*ac
⇒ with ac = v²/r
Fc = M * v²/r
Fc = 55.6 * 1.73²/0.608
Fc =273.69 N
The force exerted by the rope on her arms is 273.7 N = 0.274 kN
Answer:

Explanation:
The free body diagram of the block on the slide is shown in the below figure
Since the block is in equilibrium we apply equations of statics to compute the necessary unknown forces
N is the reaction force between the block and the slide
For equilibrium along x-axis we have

Using value of N from equation β in α we get value of force as

Applying values we get
