The motion of an airplane when the pilot changes the throttle setting of the engine is described by the first law. The motion of a ball falling down through the atmosphere, or a model rocket being launched up into the atmosphere are both examples of Newton's first law.
Answer:
a. Microwaves—3 and infrared waves—1
Explanation:
Microwaves and infrared waves are both part of the electromagnetic spectrum, but they have different frequency and wavelength.
In particular:
- Microwaves are long-wavelength electromagnetic waves, with wavelength between 1 mm and 1 m. Their wavelength is longer than visible light
- Infrared waves are also long-wavelength electromagnetic waves, but their wavelength is shorter than microwaves: between 700 nm and 1 mm. Their wavelength is also longer than visible light.
The two types of waves are also used for different purposes. In particular:
- Infrared waves are emitted by any hot object, and their intensity depends on the temperature of the object. Therefore, they are used in astronomy to show the heat released by astronomical objects (option 1)
- Microwaves are used to study the Cosmic Microwave Background (CMB). This is electromagnetic radiation that permeates the whole universe, and its wavelength depends inversely on the local temperature. Therefore, areas with longer wavelength have lower temperature, and viceversa. Therefore, microwaves are used to measure temperature differences in space (option 3).
Answer:
refractive index of plastic is 1.42
Explanation:
When light ray enters from one medium to other medium then due to transition of light it bends away or towards the normal, this phenomenon is known as refraction of light
So here we know that

here we have



now we have


Let the tension in the thread will be at angle theta
now by force balance in x and y directions we can say



now for the height of the kite we can use



<em>so it will be at height 32.23 m from ground</em>
Answer:
Distance, d = 192 meters
Explanation:
We have,
Initial velocity of an object is 10 m/s
Acceleration of the object is 3.5 m/s²
Time, t = 8 s
We need to find the distance travelled by the object during that time. Second equation of motion gives the distance travelled by the object. It is given by :


So, the distance travelled by the object is 192 meters.