Answer:
Explanation:
The Erosion in the Colorado Rookies Scenario that record a ready rain were more than the other scenario in the same area with just a drizzle. The Erosion is much in the Colorado Rockies Scenario that record a steady rain because the volume of the rivers has goes up compare to that of the Scenario with just a drizzle. As a result of the increased in the amount of the rivers bank that is flowing, the river flows more faster which helps in the transportation of the sediments or Erodes.
I believe the answer is .87g/mL. But I'm not sure so whatevs
<span>1. </span>To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
V2 = P1 x V1 / P2
V2 = 104.1 x 478 / 88.2
<span> V2 =564.17 cm^3</span>
Answer:
see explanation below
Explanation:
Question is incomplete, so in picture 1, you have a sample of this question with the missing data.
Now, in general terms, the absorbance of a substance can be calculated using the beer's law which is the following:
A = εlc
Where:
ε: molar absortivity
l: distance of the light in solution
c: concentration of solution
However, in this case, we have a plot line and a equation for this plot, so all we have to do is replace the given data into the equation and solve for x, which is the concentration.
the equation according to the plot is:
A = 15200c - 0.018
So solving for C for an absorbance of 0.25 is:
0.25 = 15200c - 0.018
0.25 + 0.018 = 15200c
0.268 = 15200c
c = 0.268/15200
c = 1.76x10⁻⁵ M
<span>PV/T = P'V'/T'
660 x 1.00/295.2 = P' x 1.00/317.8
P'=710.5 torr</span>