The frequency of photons released in such transitions is approximately .
Explanation:
The Rydberg Equation gives the wavelength (in vacuum) of photons released when the electron of a hydrogen atom transitions from one main energy level to a lower one.
Let denote the wavelength of the photon released when measured in vacuum.
Let denote the Rydberg constant for hydrogen. .
Let and denote the principal quantum number of the initial and final main energy level of that electron. (Both and should be positive integers; .)
The Rydberg Equation gives the following relation:
.
Rearrange to obtain and expression for :
.
In this question, while . Therefore:
.
Note, that is equivalent to . That is: .
Look up the speed of light in vacuum: . Calculate the frequency of this photon:
.
Let represent Planck constant. The energy of a photon of wavelength would be .
Look up the Planck constant: . With a frequency of (,) the energy of each photon released in this transition would be:
because it will control the birth of a child which can happen alot being overpopulated in the country or world. It also can mange their life and create a small and happy and healthy family.Also the child can get more love and support from their parents if they have less children and it wont be a taruma for the couple as well. because growing a child can be expensive time costly and really hard.
1. According to the law of conservation of mass, In a course of chemical reaction, matter can neither be created nor destroyed but can be changed from one form to another. This means the amount of matter at the begining and ending of a reaction must be thesame.
2. Chemical reaction is not easily reversible. when gas is produced, provided the reaction system is an open system, the gas cannot be recovered and the reactants cannot be recovered from the products. likewise color change are attributed to chemical reaction