The frequency of photons released in such transitions is approximately .
Explanation:
The Rydberg Equation gives the wavelength (in vacuum) of photons released when the electron of a hydrogen atom transitions from one main energy level to a lower one.
Let denote the wavelength of the photon released when measured in vacuum.
Let denote the Rydberg constant for hydrogen. .
Let and denote the principal quantum number of the initial and final main energy level of that electron. (Both and should be positive integers; .)
The Rydberg Equation gives the following relation:
.
Rearrange to obtain and expression for :
.
In this question, while . Therefore:
.
Note, that is equivalent to . That is: .
Look up the speed of light in vacuum: . Calculate the frequency of this photon:
.
Let represent Planck constant. The energy of a photon of wavelength would be .
Look up the Planck constant: . With a frequency of (,) the energy of each photon released in this transition would be:
Training officers in how to properly collect evidence
Explanation:
Forensic science is an interesting branch of science that involves the use of scientific procedures to solve a crime case. It encompasses collection of physical evidence from the crime scene and analyzing it in a laboratory using scientific means.
A forensic scientist is the individual in charge of performing these scientific procedures. His/her major role is to run the scientific analysis of the physical evidence brought in by the officers, however, he/she can also perform the task of training officers in how to properly collect evidence, in order not to damage the evidence or render it invalid for use.
The rate of reaction would increase because as pressure increases the molecules are more likely to bump into each other leading to a more likely hood of the molecules colliding properly to react leading to an increase in the reaction rate of the substance.
Particles in a solid have fixed locations in a volume that does not change. Solids have a definite volume and shape because particles in a solid vibrate around fixed locations.