Answer:
no
Explanation:
the metal spoon would be higher temperature
Answer: option (D)
Explanation:
The potential energy of each of the students is given below as
P.E(student A) = mgh, where m = mass of student A, g is acceleration due to gravity and h = height of the high dive structure.
The mass of student B is twice as much as that of A, hence his mass is 2m and his potential energy is given below as
P.E ( student B) =2mgh = 2(mgh)
Recall that the relationship between potential energy and work done is that
Work done = - (change in potential)
For student A, work done = - mgh
For student B, work done = - 2mgh
From the equations above it can be seen that student B will do twice the work in getting to the high dive structure than student A hence validating option D.
Answer:
The value is 
The direction is into the surface
Explanation:
From the question we are told that
The mass density is 
The coefficient of kinetic friction is
The current the wire carries is 
Generally the magnetic force acting on the wire is mathematically represented as

Here
is the frictional force which is mathematically represented as

While
is the magnetic force which is mathematically represented as

Here
is the angle between the direction of the force and that of the current
So

So

=> ![B = \mu_k * \frac{m}{L} * [\frac{g}{I} ]](https://tex.z-dn.net/?f=B%20%20%3D%20%20%5Cmu_k%20%2A%20%20%5Cfrac%7Bm%7D%7BL%7D%20%2A%20%5B%5Cfrac%7Bg%7D%7BI%7D%20%5D)
=> ![B = 0.25 * 0.117 * [\frac{9.8}{1.24} ]](https://tex.z-dn.net/?f=B%20%20%3D%20%200.25%20%2A%20%200.117%20%20%2A%20%5B%5Cfrac%7B9.8%7D%7B1.24%7D%20%5D)
=> 
Apply the right hand curling rule , the thumb pointing towards that direction of the current we see that the direction of the magnetic field is into the surface as shown on the first uploaded image
Answer:
q = 1.815 \times 10^{-8} C
Charge on one plate is positive in nature and on the other plate it is negative in nature.
Explanation:
E = 8.20 x 10^5 V/m, A = 25 cm^2, d = 22.45 mm
According to the Gauss's theorem in electrostatics
The electric field between the two plates




Charge, q = surface charge density x area

q = 1.815 \times 10^{-8} C