Answer:
Ag⁺(aq) + I⁻(aq) → AgI(s)
Explanation:
Net ionic equation is a way to write a chemical equation in which you are listing only the species that are participating in the reaction.
In the reaction:
AgNO₃(aq) + NaI(aq) → AgI(s) + NaNO₃(aq).
The ionic equation is:
Ag⁺(aq) + NO₃⁻(aq) + Na⁺(aq) + I⁻(aq) → AgI(s) + Na⁺(aq) + NO₃⁻(aq).
Now, listing only the species that are participating in the reaction:
<h3>Ag⁺(aq) + I⁻(aq) → AgI(s)</h3>
Answer:
2m/s²
Explanation:
When an object starts or at its state of rest it has an Initial speed U = 0
Final speed = 6m/s
total time taken for the acceleration = 3s
Acceleration =?
Acceleration is the change in velocity (speed) with time
OR
Time rate of change of velocity
Acceleration = <u>Change in Speed(velocity)</u>
Time taken
Hence,
Acceleration = <u> </u><u> </u><u>V - </u><u>U</u><u> </u><u> </u>
t
a = <u>6</u><u> </u><u>-</u><u> </u><u>0</u>
3
a = <u>6</u><u> </u><u> </u>
3
a = 2m/s²
Answer : The pH of the solution is, 9.63
Explanation : Given,
The dissociation constant for HCN = 
First we have to calculate the moles of HCN and NaCN.

and,

The balanced chemical reaction is:

Initial moles 0.1116 0.0461 0.08978
At eqm. (0.1116-0.0461) 0 (0.08978+0.0461)
0.0655 0.1359
Now we have to calculate the pH of the solution.
Using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
Now put all the given values in this expression, we get:


Therefore, the pH of the solution is, 9.63
Answer:
Its probably none of those.
Explanation:
White dwarf temperatures can exceed 100,000 Kelvin according to NASA (that's about 179,500 degrees Fahrenheit). Despite these sweltering temperatures, white dwarfs have a low luminosity as they're so small in size according to NMSU.