Answer: The coefficients for the given reaction species are 1, 6, 2, 3.
Explanation:
The given reaction equation is as follows.

Now, the two half-reactions can be written as follows.
Reduction half-reaction: 
This will be balanced as follows.
... (1)
Oxidation half-reaction: 
This will be balanced as follows.
... (2)
Adding both equation (1) and (2) we will get the resulting equation as follows.

Thus, we can conclude that coefficients for the given reaction species are 1, 6, 2, 3.
Answer:
82.4 s
Explanation:
Find the NUMBEr of half lives...then multiply by 54.3
2.27 = 6.5 (1/2)^n
log (2.27/6.5) / log (1/2) = n = 1.52 half lives
1.52 * 54.3 = 82.4 s
<h2><u>Answer:</u></h2>
Bernoulli's Theorem in a general sense relates the weight, speed, and rise in a moving fluid (liquid or gas), the compressibility and consistency (internal grinding) of which are insignificant and the flood of which is predictable, or laminar.
(1): We can discover the speed of Efflux of a fluid.
This is given by v= sqrt (2gh), where the fluid is turning out from an opening in a vessel at profundity h from free fluid surface. This condition is known as Torricelli's hypothesis.
(2): Vena Contracta: The fluid stream from gap contracts at a separation minimal outside the opening to a neck, called Vena Contracta.
The territory of cross-segment of a fly is littler than a zone of opening. From this reality, we can discover the coefficient of withdrawal.
(3) : Bernoulli's standard is utilized in the development of Venturimeter, an instrument for estimation of measure of a stream of a fluid through a pipe.
Answer:
0.453 moles
Explanation:
The balanced equation for the reaction is:
2Fe(s) + 3O2(g) ==> 2Fe2O3
From the equation, mass of O2 involved = 16 x 2 x 3 = 96g
mass of Fe2O3 involved = [(2x26) + 3 x 16] x 2
= 100g
Therefore 96g of O2 produced 100g of Fe2O3
32.2g of O2 Will produce 100x32.2/96
= 33.54g of Fe2O3
Converting it to mole using number of mole = mass/molar mass
but molar mass of Fe2O3 = 26 + (16 X 3)
= 74g/mole
Therefore number of mole of 33.54g of Fe2O3 = 33.54/74
= 0.453 moles