Gene therapy is designed to introduce genetic material into cells to compensate for abnormal genes or to make a beneficial protein. If a mutated gene causes a necessary protein to be faulty or missing, gene therapy may be able to introduce a normal copy of the gene to restore the function of the protein.
Entropy is also defined as a measure of the average kinetic energy of particles in a sample of matter.
Answer:
48%
Explanation:
Based on Gay-Lussac's law, the pressure is directly proportional to the temperature. To solve this question we must assume the temperature increases and all CO2 remains without reaction. The equation is:
P1T2 = P2T1
<em>Where Pis pressure and T absolute temperature of 1, initial state and 2, final state of the gas:</em>
P1 = 10.0atm
T2 = 1420K
P2 = ?
T1 = 730K
P2 = 10.0atm*1420K / 730K
P2 = 19.45 atm
The CO2 reacts as follows:
2CO2 → 2CO+ O2
Where 2 moles of gas react producing 3 moles of gas
Assuming the 100% of CO2 react, the pressure will be:
19.45atm * (3mol / 2mol) = 29.175atm
As the pressure rises just to 24.1atm the moles that react are:
24.1atm * (2mol / 19.45atm) = 2.48 moles of gas are present
The increase in moles is of 0.48 moles, a 100% express an increase of 1mol. The mole percent that descomposes is:
0.48mol / 1mol * 100 = 48%
Answer:

Explanation:
1. Take in account the sulfuric acid at STP:

2. Density is expressed as the ratio between the mass and the volume of a substance so:

Solving for m:

3. Replace values:


Molarity = moles of solute/volume of solution in liters.
From this relation, we can figure out the number of moles of solute by multiplying the molarity of the solution by the volume in liters.
We have 53.1 mL, or 0.0531 L, of a 12.5 M, or 12.5 mol/L, solution. Multiplying 12.5 mol/L by 0.0531 L, we obtain 0.664 moles. So, in this volume of solution, there are 0.664 moles of solute (HCl).