I believe the answer is B??????????? Hope this helps
~Queensupreme
This is a problem involving heat transfer through radiation. The solution to this problem would be to use the formula for heat flux.
ΔQ/Δt = (1000 W/m²)∈Acosθ
A is the total surface area:
A = (1 m²) + 4(1.8 cm)(1m/100 cm)(√(1 m²))
A = 1.072 m²
ΔQ is the heat of melting ice.
ΔQ = mΔHfus
Let's find its mass knowing that the density of ice is 916.7 kg/m³.
ΔQ = (916.7 kg/m³)(1 m²)(1.8 cm)(1m/100 cm)(<span>333,550 J/kg)
</span>ΔQ = 5,503,780 J
5,503,780 J/Δt = (1000 W/m²)(0.05)(1.072 m²)(cos 33°)
<em>Δt = 122,434.691 s or 34 hours</em>
Answer:
in my opinion it wouldn't be regular seasons like what we have now it would be equal in every poles .. there would not be ice in North. [its my opinion though] sorry if I am wrong
Answer: 2 mol
Explanation:
- According to the ideal gas law, One mole of an ideal gas at STP (standard temperature and normal pressure) occupies 22.4 liters.
- Using cross multiplication,
1 mol of (O2) → 22.4 L
? → 43.9 L
Therefore, the number of moles of oxygen in 43.9 L = (43.9 × 1)/ 22.4 = 1.96 mol≈ 2 mol..