Answer:
D. Wind and solar energy help save money and reduce air pollution.
Explanation:
Answer:
a) 578.0 cm²
b) 25.18 km
Explanation:
We're given the density and mass, so first calculate the volume.
D = M / V
V = M / D
V = (6.740 g) / (19.32 g/cm³)
V = 0.3489 cm³
a) The volume of any uniform flat shape (prism) is the area of the base times the thickness.
V = Ah
A = V / h
A = (0.3489 cm³) / (6.036×10⁻⁴ cm)
A = 578.0 cm²
b) The volume of a cylinder is pi times the square of the radius times the length.
V = πr²h
h = V / (πr²)
h = (0.3489 cm³) / (π (2.100×10⁻⁴ cm)²)
h = 2.518×10⁶ cm
h = 25.18 km
The kinetic energy of an object of mass m and velocity v is given by
Let's call
the initial speed of the car, so that its initial kinetic energy is
where m is the mass of the car.
The problem says that the car speeds up until its velocity is twice the original one, so
and by using the new velocity we can calculate the final kinetic energy of the car
so, if the velocity of the car is doubled, the new kinetic energy is 4 times the initial kinetic energy.
Maps and Globes share the following features:
Both are scale Models.
Explanation:
A globe is a scale model of the Earth that presents the most accurate depiction of geographic information such as area, distance, and direction.
A map is a two dimensional representation or a drawing of the earth’s surface, or a part of it, on a flat surface, according to a scale. Thus it is also a scale model.
A globe differs from a map. It is a three dimensional sphere representing the whole Earth.
A map is usually used to represent a specific part of the Earth and is used for Navigation. It has details and symbols. However, a globe can not be used for such details.
A globe can be used to get a broad-level picture of the world.
Keywords: geography, earth, maps, globes
Learn more about maps from brainly.com/question/1565784
#learnwithBrainly