A cooked chicken would be somewhat burnt or cooked. A glass of kool aid would be mixed, or aka homogenous mixture. The glass would maintain a color, because its not water.
Answer:
2.387 mol/L
Explanation:
The reaction that takes place is:
- 2HCl + Ba(OH)₂ → BaCl₂ + 2H₂O
First we <u>calculate how many moles of each reagent were added</u>:
- HCl ⇒ 200.0 mL * 3.85 M = 203.85 mmol HCl
- Ba(OH)₂ ⇒ 100.0 mL * 4.6 M = 460 mmol Ba(OH)₂
460 mmol of Ba(OH)₂ would react completely with (2*460) 920 mmol of HCl. There are not as many mmoles of HCl so Ba(OH)₂ will remain in excess.
Now we <u>calculate how many moles of Ba(OH)₂ reacted</u>, by c<em>onverting the total number of HCl moles to Ba(OH)₂ moles</em>:
- 203.85 mmol HCl *
= 101.925 mmol Ba(OH)₂
This means the remaining Ba(OH)₂ is:
- 460 mmol - 101.925 mmol = 358.075 mmoles Ba(OH)₂
There are two OH⁻ moles per Ba(OH)₂ mol:
- OH⁻ moles = 2 * 358.075 = 716.15 mmol OH⁻
Finally we <u>divide the number of OH⁻ moles by the </u><u><em>total</em></u><u> volume</u> (100 mL + 200 mL):
- 716.15 mmol OH⁻ / 300.0 mL = 2.387 M
So the answer is 2.387 mol/L
Answer:
Explanation:
according to balance chemical equation
3 A2 moles produced 2 moles of A3B
so 12 moles A2 will produced moles of A3B= 12*2/3=24/3= 8
therefore 12 moles of A2 produced 8 moles of A3B
Answer:
Fossils, the shape of continents, the mid-ocean ridge system, sea floor sediment deposits, and the magnetism of rocks.
Explanation:
Fossils, the continent's shape, the mid-ocean ridge system, sea floor sediment deposits, and the magnetism of rocks on the sea floor are the evidences that support the theory of plate tectonics in the area. Fossils provides information to us when and where plants and animals once existed. Due to diverging plates, some life became isolated, and evolved into new species. Continental ‘fit’ through coastline matching. Some division of continents look as though they should fit together, e.g. South America and Africa.
The reason why Br has a greater magnitude of electron affinity than that of I is that there is a greater attraction between an added electron and the nucleus in Br than in I.
In the periodic table, there are trends that increase down the group and across the period. Electron affinity is a trend that increases across the period but decreases down the group.
Recall that the ability of an atom to accept an electron depends on the size of the atom. The smaller the atom, the greater the attraction between an added electron and the nucleus.
Since Br is smaller than I, there is a greater attraction between an added electron and the nucleus in Br than in I which explains why Br has a greater magnitude of electron affinity than I.
Learn more: brainly.com/question/17696329