Answer: The correct answer is D. 273 Kelvin, 0 degrees Celsius, 32 degrees Fahrenheit.
Explanation:
Conversion of degree Celsius to Kelvin :
K=^oC+273
Conversion of degree Celsius to degrees Fahrenheit :
^oF=(\frac{9}{5}\times ^oC)+32
By using these two conversion factors, we get the three temperature readings all mean the same thing.
For option A :
K=^oC+273=100+273=373K
^oF=(\frac{9}{5}\times ^oC)+32=(\frac{9}{5}\times 100)+32=212^oF
For option B :
K=^oC+273=100+273=373K
^oF=(\frac{9}{5}\times ^oC)+32=(\frac{9}{5}\times 100)+32=212^oF
For option C :
K=^oC+273=0+273=273K
^oF=(\frac{9}{5}\times ^oC)+32=(\frac{9}{5}\times 0)+32=32^oF
For option D :
K=^oC+273=0+273=273K
^oF=(\frac{9}{5}\times ^oC)+32=(\frac{9}{5}\times 0)+32=32^oF
From the given options, only option (D) is correct.
Hence, the correct option is, (D) 273 Kelvin, 0 degrees Celsius, 32 degrees Fahrenheit
Hope this helps!
I think variation.... have a great day
Answer: The enthalpy of combustion, per mole, of butane is -2657.4 kJ
Explanation:
The balanced chemical reaction is,
The expression for enthalpy change is,
Putting the values we get :
2 moles of butane releases heat = 5314.8 kJ
1 mole of butane release heat = 
Thus enthalpy of combustion per mole of butane is -2657.4 kJ
Applied forces/or unbalanced:i hope that helps you
Answer:
He will decide which drink is to be served to whom, by the use of litmus paper.
Explanation:
The litmus paper is the most common indicator to determine the acidity or basicity of a solution. Blue litmus paper changes its color to red when a solution changes from basic to acidic while red litmus paper changes its color to blue when the opposite occurs (acid → basic).
First of all the litmus paper strip, pH indicator, is immersed in a solution and allowed to pass between 10 and 15 seconds while keeping the strip submerged. Afterwards it is removed, and then the strip compares the color. If the color is diffuse, there is a color scale where it is determined which solution has alkaline or acidic pH