Answer:
The centripetal acceleration of the child at the bottom of the swing is 15.04 m/s².
Explanation:
The centripetal acceleration is given by:
Where:
: is the tangential speed = 9.50 m/s
r: is the distance = 6.00 m
Hence, the centripetal acceleration is:

Therefore, the centripetal acceleration of the child at the bottom of the swing is 15.04 m/s².
I hope it helps you!
Answer:
see the attachment
Explanation:
take coordinate system correctly. use formulas of projectile motion
Because the direction of the kicks are opposite, the net force between the applied forces is their difference.
Fn = F₂ - F₁
Substituting,
Fn = 15 N - 5 N
Fn = 10 N
From Newton's second law of motion,
Fn = m x a
where m is mass and a is acceleration. Manipulating the equation so that we are able to calculate for a,
a = Fn / m
Substituting,
a = (10 N) / 2 kg
a = 5 m/s²
<em>ANSWER: 5 m/s²</em>