Answer:
the celery would change colour!
Explanation:
pH is an important parameter for many reactions to take place in solution and in biological systems. It is related to the concentration of H⁺ ions through the following expression:
pH = 1/[H⁺] = -log [H⁺]
Wanting to know the pH of a solution is equivalent to knowing the amount of hydrogen ions present. But the pH scale is more convenient than the concentration scale because pH usually takes values between 0 and 14.
- When pH < 7 the solution is acid.
- When pH = 7 the solution is neutral (like pure water).
- When pH > 7 the solution is basic.
Answer: kinetic energy
Explanation: searched it up
<u>Answer:</u> The mass of second isotope of indium is 114.904 amu
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
Let the mass of isotope 2 of indium be 'x'
Mass of isotope 1 = 112.904 amu
Percentage abundance of isotope 1 = 4.28 %
Fractional abundance of isotope 1 = 0.0428
Mass of isotope 2 = x amu
Percentage abundance of isotope 2 = [100 - 4.28] = 95.72 %
Fractional abundance of isotope 2 = 0.9572
Average atomic mass of indium = 114.818 amu
Putting values in equation 1, we get:
![114.818=[(112.904\times 0.0428)+(x\times 0.9572)]\\\\x=114.904amu](https://tex.z-dn.net/?f=114.818%3D%5B%28112.904%5Ctimes%200.0428%29%2B%28x%5Ctimes%200.9572%29%5D%5C%5C%5C%5Cx%3D114.904amu)
Hence, the mass of second isotope of indium is 114.904 amu