Answer:
Ok, so the process here is to convert the mass of H2 (hydrogen gas) to moles by dividing the mass by the molar mass of H2. Once you have the moles then you have to multiply by the STP (standard temperature and pressure) molar volume which should be 22.4.
Molar mass of H2 = (1.01)x2 = 2.02g/mol
19.3/2.02 = 9.55 moles
Now just multiply the moles by the molar volume
9.55 moles x 22.4 = 213.92 Litres of H2 are in 19.3g of H2
Answer:
2Fe(s) + 3O2(g) --------> 2FeO3(s)
Explanation:
According to the question, a battery was used to light the steel wool by bringing the terminals very close together. When the battery came into contact with the steel wool, current was sent out through the thin wire. This caused the iron to heat up quite well.
Iron reacts with oxygen under these conditions as follows;
2Fe(s) + 3O2(g) --------> 2FeO3(s)
This is the chemical reaction that occurs when the steel wool is set on fire.
B, I would believe. There are 58, but B is the closest we can get.
A. is decomposition so HCL = H2 + Cl2
not balanced cause hcl needs 2
2HCL = H2 + Cl2
balanced
b. Br2 + Al-i = AlBr3 + I2 single rep.
not balanced since br need 3 so watch carefully cause many changes needed
3Br2 + Al-i = AlBr3 + I2 not right is unbalanced so make it 2
3Br2 + Al-i = 2AlBr3 + I2 now left Al is unbal. so make 2 there
3Br2 + 2Ali = 2AlBr3 + I2
Balanced
C. Na + S = Na2S synthesis reaction is not bal. left Na needs 2
2Na + S = Na2S balanced.