Answer:
It will take 188.06 hours for the concentration of A to decrease 10.0% of its original concentration.
Explanation:
A → B
Initial concentration of the reactant = x
Final concentration of reactant = 10% of x = 0.1 x
Time taken by the sample, t = ?
Formula used :

where,
= initial concentration of reactant
A = concentration of reactant left after the time, (t)
= half life of the first order conversion = 56.6 hour
= rate constant

Now put all the given values in this formula, we get

t = 188.06 hour
It will take 188.06 hours for the concentration of A to decrease 10.0% of its original concentration.
Based on the charge on the aluminium ion, 0.9 g of aluminium are deposited by 0.1 F of electricity.
<h3>What is electrolysis?</h3>
Electrolysis is the decomposition of a substance known as an electrolyte when electric current is passed through it.
The mass and hence moles an electrolyte deposited when current is passed through it depends on the charge on the ion.
Aluminium ion has a charge of +3 and requires 3F of electricity to deposit 1 mole or 27 g of aluminium
0.1 F will discharge = 0.1/3 × 27 g of aluminium
mass of aluminium deposited = 0.9 g of aluminium.
Therefore, 0.9 g of aluminium are deposited by 0.1 F of electricity.
Learn more about electrolysis at: brainly.com/question/26050361
Answer:
Increasing the temperature increases reaction rates because of the disproportionately large increase in the number of high energy collisions. It is only these collisions (possessing at least the activation energy for the reaction) which result in a reaction
Explanation:
Answer: the answer is B!
Explanation:
S and p’s are valence electrons and if added, there is 7 in total !
Answer:
divide the volume value by 1000
So 3828/1000=3.828