The balanced chemical reaction would be:
<span>2NI3 = N2 + 3I2
We use the reaction above and the molar masses of the substances involved. We start with the initial amount of NI3 reactant.
3.58 g NI3 (1 mol NI3 / 394.71 g NI3) (3 mol I2 / 2 mol NI3) = 0.0136 mol I2
Therefore, option C is the answer.</span>
D) because both reactions are occurring at the same rate. They are not equal but their concentrations are constant.
<span>It is cold in Taiga and it doesn't rain a lot, It snows a lot</span>
There are 30 protons and 39 neutrons in the nucleus.
This must me the isotope of an element with an atomic mass close to 69 u.
The only candidates are Zn and Ga.
Zn has a zinc-69 isotope with mass 68.926 u.
Ga has a gallium -69 isotope with mass 68.925 u.
The isotope is probably

.
It has 30 protons and 39 neutrons.
Answer:
Option C. By increasing the temperature
Explanation:
From the graphical illustration above, we see clearly that the volume and temperature of the gas are directly proportional. This implies that as the temperature increases, the volume will also increase and as the temperature decreases, the volume will also decrease. This can further be explained by using the ideal gas equation as shown below:
PV = nRT
P is the pressure.
V is the volume.
n is the number of mole.
R is the gas constant.
T is the temperature.
PV = nRT
Divide both side by P
V = nRT/P
Since n and P are constant, the equation above becomes:
V & T
V = KT
K is the constant.
The above equation i.e V = KT implies that:
As T increases, V will also increase and as T decreases, V will also decrease.
Considering the question given above,
The volume of the gas can be increased if the temperature is increased.