I dont know your question but that is true
Answer:
D. The amount of heat required to increase the temperature of 1 g of a substance by 1 °C.
Explanation:
Specific heat is defined as the amount of heat needed to raise a unit of mass of a compound by one degree on the temperature scale.
The gram is constituted as a unit of mass, and the degree Celsius as a unit of temperature, therefore, the specific heat can be defined as the amount of heat required to increase the temperature of 1 g of a substance by 1 °C.
Pressure in the submarine when the temperature is changed to 293 K is 108.9 K Pa
Explanation:
Pressure in the submarine = 108.9 kPa
Volume, V = 2.4 * 10^5 L
Pressure, P = 116k Pa
Temperature, T = 312 K
Ideal gas law: PV = nRT or n = PV / RT
So, moles of gas, n =116 KPa * 2.4 * 10 ^5L / 8.314 LK Pa K^-1 *312 K
= 1.073 *10^4 mol
when temperature is changed to 293K,
PV = nRT or P = nRT / V
=1.073 *10^4 mol *8.314 LK Pa mol^-1 K^-1 *293 K / 2.4*10^5L
=108.9 K Pa
Pressure in the submarine when the temperature is changed to 293 K is 108.9 K Pa
Seven
Elements do not contain more than 7 electron shells.
Answer:
Percent error = 25%
Explanation:
Given data:
Measured density of water = 1.25 g/mL
Accepted density value of water = 1 g/mL
Percent error = ?
Solution:
Formula:
Percent error = (measured value - accepted value / accepted value) × 100
Now we will put the values in formula:
Percent error = (1.25 g/mL - 1 g/mL /1 g/mL )× 100
Percent error = (0.25 g/mL /1 g/mL )× 100
Percent error = 0.25 × 100
Percent error = 25%