Answer:
(1/2)(1.62) t^2 = 1.4
That will give you the time, t
Explanation:
hope this helps(✿◡‿◡)
Answer:
Wavelength of the photon depends on transition from different states.
Explanation:
The wavelength of the photon that is emitted from the atom during the transition depends on the transition from different states. If the photon is emitted from n=4 state to n=3 state, the wavelength of photon is 1875 while on the other hand, if the photon is emitted from n=5 state to n=3 state, the wavelength of photon is 1282. If the photon is emitted from n=3 state to n=2 state, the wavelength of photon is 656.
Answer:
Experiment 8 E Data Table 3 fl Data Table 4 fl Data Table 5 fl Data Table 6 Data Table 3: Polystyrene Test Tube, 12x75mm Volume of water at room temperature (V1 in mL) Volume of gas in polystyrene tube at boil (V2 in mL) Temperature of gas at boil inside polystyrene tube (°C) Volume of gas in polystyrenetube at room temperature (V3 in mL) Temperature of gas.
Explanation:
Hope this helps
Mark as Brainliest please
Answer:
0.038 g of reactant
Explanation:
Data given:
Heat release for each gram of reactant consumption = 36.2 kJ/g
mass of reactant that release 1360 J of heat = ?
Solution:
As 36.2 kJ of heat release per gram of reactant consumption so first we will convert KJ to J
As we know
1 KJ = 1000 J
So
36.2 kJ = 36.2 x 1000 = 36200 J
So it means that in chemical reaction 36200 J of heat release for each gram of reactant consumed so how much mass of reactant will be consumed if 1360 J heat will release
Apply unity formula
36200 J of heat release ≅ 1 gram of reactant
1360 J of heat release ≅ X gram of reactant
Do cross multiplication
X gram of reactant = 1 g x 1360 J / 36200 J
X gram of reactant = 0.038 g
So 0.038 g of reactant will produce 1360 J of heat.