The choices can be found elsewhere and as follows:
a. <span>Alpha Centauri </span>
<span>c. </span><span>T-tauri </span>
<span>b. </span><span>The Big Bang </span>
<span>d. </span><span>Nebular
</span>
I believe the correct answer from the choices listed above is option D. <span>Strong solar winds blew dust and gas out of the solar system during Nebular phase. This seems to be the most logical option from the choices. Hope this helps. Have a nice day.</span>
Answer:
9.47 rad/s^2
Explanation:
Diameter = 15 cm, radius, r = diameter / 2 = 7.5 cm = 0.075 m, u = 0, v = 7.1 m/s,
s = 35.4 m
let a be the linear acceleration.
Use III equation of motion.
v^2 = u^2 + 2 a s
7.1 x 7.1 = 0 + 2 x a x 35.4
a = 0.71 m/s^2
Now the relation between linear acceleration and angular acceleration is
a = r x α
where, α is angular acceleration
α = 0.71 / 0.075 = 9.47 rad/s^2
Weight of an object is given by the formula W = m x g , where
m : mass of the object
g : gravitational acceleration
It is <u>independent of the horizontal </u><u>acceleration</u>.
<h3>What do we mean by weight of an object?</h3>
Weight is a gauge of how strongly gravity is<u> pulling something down.</u> It is dependent on the object's mass, or how much matter it consists of. It also depends on the <u>object's uniformly distributed</u> downward acceleration caused by gravity.
This equation can be used to express weight:
W = m x g
<h3>What is the difference between weight and mass of an object?</h3>
In everyday speech, the phrases "mass" and "weight" are frequently used interchangeably; nevertheless, the two concepts don't have the same meaning. In contrast to weight, which is a <u>measurement of</u> how the <u>force</u> of gravity works upon a mass, mass is the <u>amount of substance</u> in a material.
To learn more about gravity and acceleration :
brainly.com/question/13860566
#SPJ4
Answer:
just divide 22 N by 20 kg to get the acceleration in m/s2
Explanation:
I hope this is right-
Answer:
70%
Explanation:
35 is 70% of 50, have a good day :)