<h3>
Answer:</h3>
117.6 Joules
<h3>
Explanation:</h3>
<u>We are given;</u>
- Force of the dog is 24 N
- Distance upward is 4.9 m
We are required to calculate the work done
- Work done is the product of force and distance
- That is; Work done = Force × distance
- It is measured in Joules.
In this case;
Force applied is equivalent to the weight of the dog.
Work done = 24 N × 4.9 m
= 117.6 Joules
Hence, the work done in lifting the dog is 117.6 Joules
[r] =6
Solve for r by simplifying both sides of the equation, then isolating the variable.
<em> </em>I hope this makes sense
Answer:
a) 1.73*10^5 J
b) 3645 N
Explanation:
106 km/h = 106 * 1000/3600 = 29.4 m/s
If KE = PE, then
mgh = 1/2mv²
gh = 1/2v²
h = v²/2g
h = 29.4² / 2 * 9.81
h = 864.36 / 19.62
h = 44.06 m
Loss of energy = mgΔh
E = 780 * 9.81 * (44.06 - 21.5)
E = 7651.8 * 22.56
E = 172624.6 J
Thus, the amount if energy lost is 1.73*10^5 J
Work done = Force * distance
Force = work done / distance
Force = 172624.6 / (21.5/sin27°)
Force = 172624.6 / 47.36
Force = 3645 N
Hello!

Use the equation for momentum:

Plug in the given mass and velocity into the equation:


Answer:
Energy is transformed from potential to kinetic and vice versa
Explanation:
The energy is transformed from mechanical to kinetic energy when the object changes its position with respect to a reference point, where it loses height but increases its speed. When the object is at maximum height with respect to a reference point, it will have its maximum potential energy value. When the object passes through the reference point it will have potential energy equal to zero, but this energy will become kinetic energy.
The most characteristic and real example is that of a pendulum at one end, as can be seen in the attached image.
When the pendulum is located at the top end, as shown in Figure 1, at that point the maximum potential energy will be held. Then the pendulum is released and when it passes through the reference point and its height is zero, with respect to that point, all potential energy will have become kinetic energy in the same way at this point the maximum speed of the pendulum will be set.