<span>The
kinetic energy is the work done by the object due to its motion. It is
represented by the formula of the half the velocity squared multiply by the
mass of the object. In this problem, you have two vehicles, the other one is large and the
other one is small. Let us assume that they travel with the same velocity. Note
that the kinetic energy is proportional to the mass of the object. So when you
increase the mass of the other, it also increases the kinetic energy of that
object. The same holds true for the two vehicles. The larger the vehicle, its
kinetic energy is also large and therefore its stopping distance will be longer
than that of the smaller vehicle.</span>
The truth is both of them are more reactive metal.
The height of the bullet when the velocity is zero is 256 ft.
<h3>Height of the bullet when the velocity is zero </h3>
The height of the bullet when the velocity is zero is determined by taking derivative of the function as shown below;

The height of the bullet at this time is calculated as follows;

Learn more about height of projectiles here: brainly.com/question/10008919
Answer:
<h3>Because one Coulomb of charge is an abnormally large quantity of charge, the units of microCoulombs (µC) or nanoCoulombs (nC) are more commonly used as the unit of measurement of charge. To illustrate the magnitude of 1 Coulomb, an object would need an excess of 6.25 x 1018 electrons to have a total charge of -1 C.</h3>
Explanation:
<h3><em><u>mark as brainliast</u></em></h3><h3><em><u>indian </u></em><em><u>genius </u></em><em><u>s</u></em><em><u>a</u></em><em><u>r</u></em><em><u>thak</u></em></h3>
Gravity is a force because it pulls down on objects.