Answer:
Final temperature of calorimeter is 25.36^{0}\textrm{C}
Explanation:
Molar mass of anethole = 148.2 g/mol
So, 0.840 g of anethole = of anethole = 0.00567 moles of anethole
1 mol of anethole releases 5539 kJ of heat upon combustion
So, 0.00567 moles of anethole release of heat or 31.41 kJ of heat
6.60 kJ of heat increases temperature of calorimeter.
So, 31.41 kJ of heat increases or temperature of calorimeter
So, the final temperature of calorimeter =
Answer:
cells like bacteria are bisexual so they split and their offspring is 100 percent like the parent and this process happens over and over
Explanation:
Condensation is the process of watervapor in the air is changing into liquid water. Condensation is crucial to the water cycle because it is responsible for the formation of clouds. Condensation is also the opposite of evaporation
Ngl idk but just be a nice person and mark as brainliest please
Correct Question :
Mass of water = 50.003g
Temperature of water= 24.95C
Specific heat capacity for water = 4.184J/g C
Mass of metal = 63.546 g
Temperature of metal 99.95°C
Specific heat capacity for metal ?
Final temperature = 32.80°C
In an experiment to determine the specific heat of a metal student transferred a sample of the metal that was heated in boiling water into room temperature water in an insulated cup. The student recorded the temperature of the water after thermal equilibrium was reached. The data we shown in the table above. Based on the data, what is the calculated heat absorbed by the water reported with the appropriate number of significant figures?
Answer:
1642 J
Explanation:
Given:
Mass of water = 50.003g
Temperature of water= 24.95C
Specific heat capacity for water = 4.184J/g C
Mass of metal = 63.546 g
Temperature of metal 99.95°C
Specific heat capacity for metal ?
Final temperature = 32.80° C
To calculate the heat absorbed by water, Q, let's use the formula :
Q = ∆T * mass of water * specific heat
Where ∆T = 32.80°C - 24.95°C = 7.85°C
Therefore,
Q= 7.85 * 50.003 * 4.184
Q = 1642.32 J
≈ 1642 J