Answer:
hello your question is incomplete attached below is the missing part
answer : short period oscillations frequency = 0.063 rad / sec
phugoid oscillations natural frequency (
) = 4.27 rad/sec
Explanation:
first we have to state the general form of the equation
= 
where :


comparing the general form with the given equation
= 18.2329

hence the short period oscillation frequency (
) = 0.063 rad/sec
phugoid oscillations natural frequency (
) = 4.27 rad/sec
Answer;
1. strong nuclear force
2. electromagnetic force/ electric force
Explanation;
The more protons an element has, the harder it is to bring nuclei together. It takes more energy to trigger fusion in iron and other heavy elements. Lighter elements, such as helium and hydrogen, require less energy to bring about fusion. The sun, for instance, spends most of its life converting hydrogen into helium.
-The strong nuclear force depends on; a more massive the object is the more attractive the force produced and also as distance between objects increases, attractive force decreases at a faster rate.
Answer:
the buoyant force on the chamber is F = 7000460 N
Explanation:
the buoyant force on the chamber is equal to the weight of the displaced volume of sea water due to the presence of the chamber.
Since the chamber is completely covered by water, it displaces a volume equal to its spherical volume
mass of water displaced = density of seawater * volume displaced
m= d * V , V = 4/3π* Rext³
the buoyant force is the weight of this volume of seawater
F = m * g = d * 4/3π* Rext³ * g
replacing values
F = 1025 kg/m³ * 4/3π * (5.5m)³ * 9.8m/s² = 7000460 N
Note:
when occupied the tension force on the cable is
T = F buoyant - F weight of chamber = 7000460 N - 87600 kg*9.8 m/s² = 6141980 N
Answer: Option (B)
Explanation: A stream transports its materials in different ways-
- <u>Dissolved load-</u> Here, the materials gets dissolved when mixed with water and flows along with the stream.
- <u>Suspended load</u>- Here, the materials are not fully dissolved in the water but they can be carried from one place to another in suspension mode, by the river.
- <u>Bed load-</u> Bed load are transported in three different ways such as-
- Sliding- here, the materials slides down along a curved surface under the water and carried away.
- Rolling- here, the materials are solid and due to force exerted by water, it can roll and move to distant places.
- Saltation- here, the materials are carried away in a series of jumps.
Thus, the most appropriate answer is option (B) i.e bedload.
That is because it is impossible to create a law for the behavior of every single different gas, so creating laws for an ideal gas helps us understand the basic nature of gasses which might or might not differ slightly or a lot. By understanding how an ideal gas works, we can understand how a normal gas works.