Length of the pipe = 0.39 m
Third harmonic frequency = 1400 Hz
For the third harmonic:
Wavelength = 
The center of the open pipe will host a node and the nearest anti - node from the center will be at the 0.25 × wavelength
Distance from center = 0.25 × wavelength
Distance = 
Plugging the value of the length of the pipe (L) = 0.39 m = 39 cm
Distance = 
Distance from the center to the nearest anti - node = 6.5 cm
Hence, the nearest distance to the anti - node from the center = 6.5 cm
So, option C is correct.
Answer:
the work that must be done to stop the hoop is 2.662 J
Explanation:
Given;
mass of the hoop, m = 110 kg
speed of the center mass, v = 0.22 m/s
The work that must be done to stop the hoop is equal to the change in the kinetic energy of the hoop;
W = ΔK.E
W = ¹/₂mv²
W = ¹/₂ x 110 x 0.22²
W = 2.662 J
Therefore, the work that must be done to stop the hoop is 2.662 J
Answer:
what does it mean
Explanation:
How can I help with your question?
Let
be the speed of the helicopter in still air. Let
be the speed of the wind. Then, from the given information,

Adding the above 2 equations,

The speed of the helicopter in still air 