Answer:
the value of the final pressure is 0.168 atm
Explanation:
Given the data in the question;
Let p₁ be initial pressure, v₁ be initial volume.
After expansion, p₂ is final pressure and v₂ is final volume.
So using the following equations;
p₁v₁ = nRT
p₂v₂ = nRT
hence, p₁v₁ = p₂v₂
we find p₂
p₂ = p₁v₁ / v₂
given that; initial volume v₁ = 0.175 m³, Initial pressure p₁ = 0.350 atm,
final volume v₂ = 0.365 m³
we substitute
p₂ = ( 0.350 atm × 0.175 m³ ) / 0.365 m³
p₂ = 0.06125 atm-m³ / 0.365 m³
p₂ = 0.168 atm
Therefore, the value of the final pressure is 0.168 atm
Answer:
0.51 m
Explanation:
Using the principle of conservation of energy, change in potential energy equals to the change in kinetic energy of the spring.
Kinetic energy, KE=½kx²
Where k is spring constant and x is the compression of spring
Potential energy, PE=mgh
Where g is acceleration due to gravity, h is height and m is mass
Equating KE=PE
mgh=½kx²
Making x the subject of formula

Substituting 9.81 m/s² for g, 1300 kg for m, 10m for h and 1000000 for k then

Answer:
width of slit(a)≅ 0.1mm
Explanation:
Wave length of laser pointer =λ = 685 nm
Distance between screen and slit = L = 5.5 m
Width of bright band = W=8.0cm=0.08m
width of slit=a
recall the formula;
W=(2λL)/a
a=2λL/W
a=(2 *685*10⁻⁹*5.5m)/0.08m
a=7535*10⁻⁹/0.08
a=94187.5 *10⁻⁹
a=0.0000941875m
a=0.0941875mm
a≅0.1mm