Resonance:
The resounding recurrence is the recurrence at which a bit of metal, plastic or whatever else swings/vibrates with minimal measure of vitality input. Think about a man on a play area swing. You realize that it requires next to no push to keep the individual swinging. The recurrence at which they swing forward and backward is their full recurrence. In the event that you endeavor to influence them to swing speedier or slower, it will take altogether more vitality.
Resonating Panels:
This kind of clamor is caused when the bass notes are an indistinguishable recurrence from the thunderous recurrence of a metal or plastic board. To stop or decrease the commotion related with this kind of issue, you can do two or three things.
Rattling:
This sort of commotion would be caused when 2 bits of metal, plastic, whatever... are sufficiently close to hammer into each other when they resound. This is most likely best illuminated by filling the hole between the two vibrating parts with silicone sealant or shut cell froth climate stripping. The climate stripping is a superior arrangement in places like behind the tag. On the off chance that you have a tag outline, you can get some truly thin climate stripping and put between the casing and the plate.
Answer:
The transfer of heat by the movement of fluid is called Convection Heat Transfer
Explanation:
Heat transfer by convection is the transfer of heat by fluid transport from one place to another, such that convection takes place when the heat that comes in contact of fluid containing body is moved to other parts of the container by the transporting fluid
Heat is transferred within a fluid medium mainly by convection (movement of heat by the transfer of fluid particles in the medium)
Convection heat transfer is a combination of conduction and advection heat transfer
Answer:
or 0.32 μm.
Explanation:
Given:
The radiations are UV radiation.
The frequency of the radiations absorbed (f) = 
The wavelength of the radiations absorbed (λ) = ?
We know that, the speed of ultraviolet radiations is same as speed of light.
So, speed of UV radiation (v) = 
Now, we also know that, the speed of the electromagnetic radiation is related to its frequency and wavelength and is given as:

Now, expressing the above equation in terms of wavelength 'λ', we have:

Now, plug in the given values and solve for 'λ'. This gives,
![\lambda=\frac{3\times 10^8\ m/s}{9.38\times 10^{14}\ Hz}\\\\\lambda=3.2\times 10^{-7}\ m\\\\\lambda=3.2\times 10^{-7}\times 10^{6}\ \mu m\ [1\ m=10^6\ \mu m]\\\\\lambda=3.2\times 10^{-1}=0.32\ \mu m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7B3%5Ctimes%2010%5E8%5C%20m%2Fs%7D%7B9.38%5Ctimes%2010%5E%7B14%7D%5C%20Hz%7D%5C%5C%5C%5C%5Clambda%3D3.2%5Ctimes%2010%5E%7B-7%7D%5C%20m%5C%5C%5C%5C%5Clambda%3D3.2%5Ctimes%2010%5E%7B-7%7D%5Ctimes%2010%5E%7B6%7D%5C%20%5Cmu%20m%5C%20%5B1%5C%20m%3D10%5E6%5C%20%5Cmu%20m%5D%5C%5C%5C%5C%5Clambda%3D3.2%5Ctimes%2010%5E%7B-1%7D%3D0.32%5C%20%5Cmu%20m)
Therefore, the wavelength of the radiations absorbed by the ozone is nearly
or 0.32 μm.
It would be a cold wave.
Ice ages occur when the temperatures are extremely cold.(long-term)
By Newton's second law, the net vertical force acting on the object is 0, so that
<em>n</em> - <em>w</em> = 0
where <em>n</em> = magnitude of the normal force of the surface pushing up on the object, and <em>w</em> = weight of the object. Hence <em>n</em> = <em>w</em> = <em>mg</em> = 196 N, where <em>m</em> = 20 kg and <em>g</em> = 9.80 m/s².
The force of static friction exerts up to 80 N on the object, since that's the minimum required force needed to get it moving, which means the coefficient of <u>static</u> friction <em>µ</em> is such that
80 N = <em>µ</em> (196 N) → <em>µ</em> = (80 N)/(196 N) ≈ 0.408
Moving at constant speed, there is a kinetic friction force of 40 N opposing the object's motion, so that the coefficient of <u>kinetic</u> friction <em>ν</em> is
40 N = <em>ν</em> (196 N) → <em>ν</em> = (40 N)/(196 N) ≈ 0.204
And so the closest answer is C.
(Note: <em>µ</em> and <em>ν</em> are the Greek letters mu and nu)