Blue light will scatter more compared to red light.
Blue light has a short wavelength; red light a longer wavelength. The sky looks blue because blue light is scattered far more than red light, owing to the shorter wavelength of blue light.
<h3>What is scattering of light?</h3>
Scattering of light is the phenomenon in which light rays deviate from their original path upon striking an obstacle like dust, gas molecules or water vapors. Scattering of light gives rise to many spectacular phenomena such as Tyndall effect and the red hues that can be seen at sunrise and sunset.
<h3>What is the scattering of light with example?</h3>
Some example of scattering of light that we come across in day-to-day life are: Blue colour of the sky: Out of the seven components present in sunlight, blue colour is scattered the most by the particles present in the atmosphere and hence, the sky appears blue.
To learn more about scattering of light visit:
brainly.com/question/9922540
#SPJ4
Answer:
The car stops after 32.58 m.
Explanation:
t = Time taken for the car to stop
u = Initial velocity = 20 m/s
v = Final velocity = 0
s = Displacement
a = Acceleration = -6 m/s²
Time taken by the car to stop

Total Time taken by the car to stop is 0.5+3.33 = 3.83 s

The car stops after 32.58 m.
Distance between car and obstacle is 50-32.58 = 17.42 m
The force that peter applies to the object of distance 40m is 75N.
<h3>HOW TO CALCULATE FORCE</h3>
The force applied to an object can be calculated by dividing the work done on the object by the distance moved. That is;
Force = Work done ÷ distance
According to this question, the work done is 3000 joules while the distance moved is 40m. The force is calculated as follows:
Force = 3000J ÷ 40m
Force = 75N
Therefore, the force that peter applies to the object of distance 40m is 75N.
Learn more about force at: brainly.com/question/26115859
Answer:
20meters per second
Explanation:
2000meters/50seconds= 20m/s
Answer:
0.345m
Explanation:
Let x (m) be the length that the spring is compress. If we take the point where the spring is compressed as a reference point, then the distance from that point to point where the ball is held is x + 1.1 m.
And so the potential energy of the object at the held point is:

where m = 1.3 kg is the object mass, g = 10m/s2 is the gravitational acceleration and h = x + 1.1 m is the height of the object with respect to the reference point

According to the conservation law of energy, this potential energy is converted to spring elastic energy once it's compressed

where k = 315 is the spring constant and x is the compressed length





x = 0.345 m or x = -0.263 m
Since x can only be positive we will pick the 0.345m