Nope. It's called 'centripetal' acceleration. The force that created it MAY be gravitational, but it doesn't have to be. For things on the surface of the Earth moving in circles, it's never gravity.
Answer:
2.96 cm
Explanation:
By Hook's law
Force(F) = Spring constant(k) × Extension(d)
F = k × d
Force is the weight of the object, F = W = mg
So we get, mg = kd ⇒ m ∝ d
2.5 ∝ 1.68 --------------(1)
4.4 ∝ d' --------------(2)
From (1) & (2), 4.4/2.5 = d'/1.68
d' = 2.96 cm ⇒ the required extension.
Answer:
2.19 N/m
Explanation:
A damped harmonic oscillator is formed by a mass in the spring, and it does a harmonic simple movement. The period of it is the time that it does one cycle, and it can be calculated by:
T = 2π√(m/K)
Where T is the period, m is the mass (in kg), and K is the damping constant. So:
2.4 = 2π√(0.320/K)
√(0.320/K) = 2.4/2π
√(0.320/K) = 0.38197
(√(0.320/K))² = (0.38197)²
0.320/K = 0.1459
K = 2.19 N/m
Answer:
a) 
Now we can replace the velocity for t=1.75 s

For t = 3.0 s we have:

b) 
And we can find the positions for the two times required like this:
And now we can replace and we got:

Explanation:
The particle position is given by:

Part a
In order to find the velocity we need to take the first derivate for the position function like this:

Now we can replace the velocity for t=1.75 s

For t = 3.0 s we have:

Part b
For this case we can find the average velocity with the following formula:

And we can find the positions for the two times required like this:
And now we can replace and we got:

Answer:
159.38 Watts
Explanation:
Initially;
- Mass on the spring is 8.5 kg
- Therefore, compression force is 85 N
- Compression distance is 15 cm or 0.15 m
But;
F = kx
where F is the force of compression, k is the spring constant and x is the compression distance.
Thus;
k = F/x
= 85 N ÷0.15
= 566.67 N/m
We are required to determine the power needed to stretch the same spring for 1.5 m in 4 secs.
Power = Work done ÷ time
Work done is given by 0.5kx²
Therefore;
Power = 0.5kx²÷ t
= (0.5×566.67 N/m × 1.5² ) ÷ 4 seconds
= 159.38 Watts
Thus, the power needed is 159.38 watts