Answer:
escribe esa pregunta en una región de Latinoamérica
Muy bein me gusta hope this makes you smile
Answer:
18.9 x 10¹³ grams of Bauxite Ore
Explanation:
Al₂O₃ = 50% of Bauxite Ore
Al₂O₃ = 0.5 (Bauxite Ore)--------------------------------------- (1)
Overall reaction:
2Al₂O₃ + 3C → 4Al + 3CO₂--------------------------------------- (2)
[ Al= 27 , O=16, C=12]
From (2), 2 moles of Aluminium oxide (Al₂O₃) gives 4 moles of Aluminium
In terms of grams, we can say:
Al₂O₃ = [2(27) +3(16)]
= 54 +48
=102grams
2 moles of Al₂O₃ = 2 x102grams
=204grams
4 moles of Al = 4 x 27
=108 grams
So from (2):
204 grams of Al₂O₃ = 108 grams of Aluminium
x grams of Al₂O₃ = 5.0 x 10¹³grams of Aluminium
Calculating for x:
x = (204 x 5.0 x 10¹³)/ 108
= 9.44 x 10¹³ grams
So 9.44 x 10¹³ grams of pure bauxite (Bauxite) is required.
However the to calculate the quantity of raw bauxite, we use (1):
Bauxite ore = Pure Bauxite/0.5
= 9.44 x 10¹³ grams/0.5
= 18.88 x 10¹³ grams
≈ 18.9 x 10¹³ grams
Answer:
This a simple stoichiometry problem using the ideal gas law.
First take the grams of ammonium carbonate and convert it to moles using its molar mass and dividing. 11.9 g/96.0932 g/mol= .12384 mol
Now use a molar conversion using the balanced equation,
1 mol (NH4)2CO3 ---> 4 mol gas formed (2 mol NH3 + 1 mol CO2 + 1 mol H2O) = .12384 x 4 = .49535 mol gas
PV=nRT
V=nRT/P= .49535mol (.08206 Lxatm/molxK) (296K)/ (1.03 atm)=11.682 L
Answer:
(A) fossil is the most useful.
It serves as an index fossil. The seashell is a great index fossil because it only appears in the sandstone layer in multiple locations in the same layer of time.
Explanation: