Answer:
- 1 mole of carbon disulfide gas at 273 K and 40 L
- 1 mol of chlorine gas at 273 K and 40 L
- 1 mol of neon gas at 273 K and 40 L
- 1 mol of neon gas at 273 K and 20 L
- 1/2 mol of neon gas at 273 K and 20 L
- 1/2 mol of neon gas at 100 K and 20 L
- 1/2 mol of liquid neon at 100 K
Explanation:
Entropy is the measure of disorder or randomness in a closed system. Its an extensive property of a thermodynamic system
The following points must be considered when ranking the systems according to their entropy:
- The entropy of gases are highest than liquids or solid. And entropy of liquid is higher than solid. That is because gas has more microstate thus have the highest entropy.
- Entropies of large complicated molecules are greater than those of smaller, simpler molecules. Because larger molecules have more disorder because of the greater number of ways they can be move around in three dimensional space.
- highest temperature and highest volume will lead to greatest entropy
- 1 mole of any substance will have greater entropy than 1/2 mole of that same substance
Answer:
pH = 8.314
Explanation:
equil: S S 3S
∴ Ksp = [ Y+ ] * [ OH- ]³ = 6.0 E-24
⇒ 6.0 E-24 = ( S )*( 3S )³
⇒ 6.0 E-24 = 27S∧4
⇒ 2.22 E-25 = S∧4
⇒ ( 2.22 E-25 )∧(1/4) = S
⇒ S = 6.866 E-7 M
⇒ [ OH- ] = 3*S =2.06 E-6 M
⇒ pOH = - Log [ OH- ]
⇒ pOH = - Log ( 2.06 E-6 )
⇒ pOH = 5.686
∴ pH = 14 - pOH
⇒ pH = 8.314
Answer:
Its passive
Explanation:
Facilitated diffusion is a type of passive transport that allows substances to cross membranes with the assistance of special transport proteins.
The Earth's rotation has no relation to the phases of the moon.
Like everything else in the sky, the moon rises in the east just like the stars, planets, and the sun.
Missing question: Express the salt concentration in kg/m³.
Answer is: the salt concentration is 9.8 kg/m³.
m(NaCl) = 9.8 g ÷ 1000 g/kg.
m(NaCl) = 0.0098 kg.
V(solution) = 1 L = 1 dm³.
V(solution) = 1 dm³ ÷ 1000 dm³/m³.
V(solution) = 0.001 m³.
d(solution) = m(NaCl) ÷ V(solution).
d(solution) = 0.0098 kg ÷ 0.001 m³.
d(solution) = 9.8 kg/m³.