Answer:
2K + 2H₂O → 2KOH + H₂
Explanation:
The reactants are:
Potassium metal = K
Water = H₂O
The products are:
Potassium hydroxide = KOH
Hydrogen gas = H₂
The reaction equation is given as;
Reactants → Products
2K + 2H₂O → 2KOH + H₂
The reaction is a single displacement reaction
2.2311 moles of gas are there in a 50. 0 l container at 22. 0 °c and 825 torrs.
<h3>What is an ideal gas?</h3>
An Ideal gas is a hypothetical gas whose molecules occupy negligible space and have no interactions, and which consequently obeys the gas laws exactly.
Assuming the gas is ideal, we can solve this problem by using the following equation:
PV = nRT
Where:
P = 825 torr ⇒ 825 / 760 = 1.08 atm
V = 50 L
n = ?
R = 0.082 atm·L·mol⁻¹·K⁻¹
T = 22 °C ⇒ 22 + 273.16 = 295.16 K
We input the data:
1.08 atm x 50 L = n x 0.082 atm·L·mol⁻¹·K⁻¹ x 295.16 K
And solve for n:
24.20312
n = 2.2311 mol
Hence, 2.2311 moles of gas are there in a 50. 0 L container at 22. 0 °c and 825 torrs.
Learn more about ideal gas here:
brainly.com/question/23580857
#SPJ4
A) folded protein happens because this is the most stable conformation that has the most number of internal hydrogen bonds , which result in hydrophobic functional groups being on the outer sides of the protein and causing the hydrophobic effect