Answer:
a) t = 20 [s]
b) Can't land
Explanation:
To solve this problem we must use kinematics equations, it is of great importance to note that when the plane lands it slows down until it reaches rest, ie the final speed will be zero.
a)
where:
Vf = final velocity = 0
Vi = initial velocity = 100 [m/s]
a = desacceleration = 5 [m/s^2]
t = time [s]
Note: the negative sign of the equation means that the aircraft slows down as it stops.
0 = 100 - 5*t
5*t = 100
t = 20 [s]
b)
Now we can find the distance using the following kinematics equation.
x - xo = distance [m]
x -xo = (0*20) + (0.5*5*20^2)
x - xo = 1000 [m]
1000 [m] = 1 [km]
And the runaway is 0.8 [km], therefore the jetplane needs 1 [km] to land. So the jetpalne can't land
Answer ) Sound level equation
The intensity of a sound wave is related to its amplitude squared by the following relationship: I=(Δp)22ρvw I = ( Δ p ) 2 2 ρ v w . Here Δp is the pressure variation or pressure amplitude (half the difference between the maximum and minimum pressure in the sound wave) in units of pascals (Pa) or N/m2.
The law of reflection states that the angle of incidence is equal to the angle of reflection. Furthermore, the law of reflection states that the incident ray, the reflected ray and the normal all lie in the same plane.
hope this helps :)
Explanation:
The given data is as follows.
Length (l) = 2.4 m
Frequency (f) = 567 Hz
Formula to calculate the speed of a transverse wave is as follows.
f =
Putting the gicven values into the above formula as follows.
f =
567 Hz =
v = 544.32 m/s
Thus, we can conclude that the speed (in m/s) of a transverse wave on this string is 544.32 m/s.
Answer:
The answer is not able to be solved, because we dont know what objects are in it, and how heavy they are. More information please!
Explanation: