Answer:
What is freezing point?
A liquid's freezing point is determined at which it turns into a solid. Corresponding to the melting point, the freezing point often rises with increasing pressure. In the case of combinations and for some organic substances, such as lipids, the freezing point is lower than the melting point. The first solid which develops when a combination freezes often differs in composition from the liquid, and the development of the solid alters the composition of the remaining liquid, typically lowering the freezing point gradually. Utilizing successive melting and freezing to gradually separate the components, this approach is used to purify mixtures.
What is melting point?
The temperature at which a purified substance's solid and liquid phases may coexist in equilibrium is referred to as the melting point. A solid's temperature goes up when heat is added to it until the melting point is achieved. The solid will then turn into a liquid with further heating without changing temperature. Additional heat will raise the temperature of the liquid once all of the solid has melted. It is possible to recognize pure compounds and elements by their distinctive melting temperature, which is a characteristic number.
The difference between freezing point and melting point:
- While a substance's melting point develops when it transforms from a solid to a liquid, a substance's freezing point happens when a liquid transforms into a solid when the heat from the substance is removed.
- When the temperature rises, the melting point can be seen, and when the temperature falls, the freezing point can be seen.
- When a solid reaches its melting point, its volume increases; meanwhile, when a liquid reaches its freezing point, its volume decreases.
- While a substance's freezing point is not thought of as a distinctive attribute, its melting point is.
- While external pressure is a significant component in freezing point, atmospheric pressure is a significant element in melting point.
- Heat must be supplied from an outside source in order to reach the melting point for such a state shift. When a material is at its freezing point, heat is needed to remove it from the substance in order to alter its condition.
<em>Reference: Berry, R. Stephen. "When the melting and freezing points are not the same." Scientific American 263.2 (1990): 68-75.</em>
Answer:
All these is caused by the repulsion force.
Explanation:
The electroscope produces a series of electric charges that produce a repulsion force when is putted in contact with a electric charged object.
As the physics law mentions, two different forces are repealed, the electrocospe is charged negatively and the object positively, causing a repulsion force that avoids that both objects touch the other.
The total work done by the electric field on the charge is given by the scalar product between the electric force acting on the charge and the displacement of the charge:
where the force is F=qE, d=0.556 and
. Using the value of q and E given by the problem, we find
Acceleration means speeding up, slowing down, or changing direction. The graph doesn't show anything about direction, so we just have to examine it for speeding up or slowing down ... any change of speed.
The y-axis of this graph IS speed. So the height of a point on the line is speed. If the line is going up or down, then speed is changing.
Sections a, c, and d are all going up or down. Section b is the only one where speed is not changing. So we can't be sure about b, because we don't know if the track may be curving ... the graph can't tell us that. But a, c, and d are DEFINITELY showing acceleration.
- initial velocity=u=24m/s
- Acceleration=a=4m/s^2
- Distance=s=96m
- Final velocity=v
Using 3rd equation of kinematics