Answer:
Option D
Explanation:
Taking 2020 unit test for edu right now.
Answer:
C = 771.35 J/kg°C
Explanation:
Here, e consider the conservation of energy equation. The conservation of energy principle states that:
Heat Given by Metal Piece = Heat Absorbed by Water + Heat Absorbed by Container
Since,
Heat Given or Absorbed by a material = m C ΔT
Therefore,
m₁CΔT₁ = m₂CΔT₂ + m₃C₃ΔT₃
where,
m₁ = Mass of Metal Piece = 2.3 kg
C = Specific Heat of Metal = ?
ΔT₁ = Change in temperature of metal piece = 165°C - 18°C = 147°C
m₂ = Mass of Metal Container = 3.8 kg
ΔT₂ = Change in temperature of metal piece = 18°C - 15°C = 3°C
m₃ = Mass of Water = 20 kg
C₃ = Specific Heat of Water = 4200 J/kg°C
ΔT₃ = Change in temperature of water = 18°C - 15°C = 3°C
Therefore,
(2.3 kg)(C)(147°C) = (3.8 kg)(C)(3°C) + (20 kg)(4186 J/kg°C)(3°C)
C[(2.3 kg)(147°C) - (3.8 kg)(3°C)] = 252000 J
C = 252000 J/326.7 kg°C
<u>C = 771.35 J/kg°C</u>
Explanation:
India. Total wealth: $8.9 trillion | Wealth per capita: $6,440 | India, which is the fifth-largest economy in the world, is home to 3,57,000 HNWIs and 128 billionaires.
Great experiment ! Everybody should try it if they can get the equipment.
It demonstrates a lot of things that are very hard to explain in words.
I hope the students remembered to tilt the axis of the globe. If they didn't,
and instead kept it straight up and down, then each city had pretty much
the same amount of bulb-light all the way around, and there were no seasons.
If the axis of the globe was tilted, then City-D had the least variation in
seasons. City-D is only 2° from the equator, so the sun is more direct
there all year around than it is at any of the others.
"Dispersion forces" is the one intermolecular force among the following choices given in the question that <span>explains why iodine (I2) is a solid at room temperature. The correct option among all the options that are given in the question is the third option or the penultimate option. I hope that the answer has helped you.</span>