wait I have an wuestion is that high school work
Answer:
b) 3.10
Explanation:
HF ⇄ H
+ + F
Using Henderson-Hasselbalch Equation:
pH = pKa + log [A-]/[HA].
Where;
pKa = Dissociation constant = -log Ka
Hence, pKa of HF = -log 7.2 x 10^-4 = 3.14266
[A-] = concentration of conjugate base after dissociation = moles of base/total volume
= 0.15 x 0.3/0.8
= 0.05625 M
[HA] = concentration of the acid = moles of acid/total volume
= 0.10 x 0.5/0.8
= 0.0625 M
Note: <em>Total volume = 500 + 300 = 800 mL = 0.8 dm3</em>
pH = 3.14266 + log [0.05625/0.0625]
= 3.14267 + (-0.04575749056)
= 3.09691250944
<em>From all the available options below:</em>
<em>a) 2.97
</em>
<em>b) 3.10
</em>
<em>c) 3.19
</em>
<em>d) 3.22
</em>
<em>e) 3.32</em>
The correct option is b.
The atmospheric pressure will be:
The pressure of the atmosphere resulting from the mercury column is 0.959 atm
What is atmospheric pressure?
The force that an object experiences from the weight of the air above it per unit area are known as atmospheric pressure.
Given: Height of mercury column = 729 mm Hg
To find: The pressure of the atmosphere
Calculation:
The atmospheric column resulting from the mercury column is calculated as follows:
1 atm =760 mm Hg
So, we can convert the 729 mm Hg to atm, and we get
Atmospheric pressure = 729 x 1 atm / 760 = 0.959 atm
Learn more about atmospheric pressure here,
brainly.com/question/14315894
#SPJ4
The amount of the solute is constant during dilution. So the mole number of HCl is 2*1.5=3 mole. The volume of HCl stock is 3/12=0.25 L. So using 0.25 L stock solution and dilute to 2.0 L.