Answer:
Explanation:
% Clears variables and screen
clear; clc
% Asks user for input
n = input('Total number of objects: ');
r = input('Size of subgroup: ');
% Computes and displays permutation according to basic formulas
p = 1;
for i = n - r + 1 : n
p = p*i;
end
str1 = [num2str(p) ' permutations'];
disp(str1)
% Computes and displays combinations according to basic formulas
str2 = [num2str(p/factorial(r)) ' combinations'];
disp(str2)
=================================================================================
Example: check
How many permutations and combinations can be made of the 15 alphabets, taking four at a time?
The answer is:
32760 permutations
1365 combinations
==================================================================================
Answer:
False
Explanation:
The given statement is False. In real scenario the throttling valve not replaced by an isentropic turbine in the ideal vapor-compression refrigeration cycle. It is done so that the ideal vapor-compression refrigeration cycle to make the ideal vapor-compression refrigeration cycle more closely approximate the actual cycle.
Answer:
Calculate the individual residential lifetime cancer risk.
Risk = Potential factor x CDI …… (1)
Calculate the value of C
C = 
t = d / v
t = 150 miles / 2 mile per hrs.
t = 75 hrs
t = 75/24
t = 3.13 days
Substitute the obtained value in (2).
C = 
C = 0.72 x e^(-0.1*3.13)
C = 0.72 x 0.7313
C = 0.526 mg/L
Substitute the obtained value in (1).
Risk = Potential factor x CDI
Risk = 0.30kg.d/mg x 0.526mg/L x 2L/d x 350day/365days
Risk = 0.3026
Answer:
required feedback resistance ( R2 ) = 100 k Ω
Explanation:
Given data :
Voltage gain = 100
input resistance ( R1 ) = 1 k ohms
calculate feedback resistance required
voltage gain of differential amplifier

= Voltage gain = R2/R1
= 100 = R2/1
hence required feedback resistance ( R2 ) = 100 k Ω
Answer:
Flow velocity
50.48m/s
Pressure change at probe tip
1236.06Pa
Explanation:
Question is incomplete
The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to the flow. If the differential height between the water columns connected to the two outlets of the probe is 0.126m, determine (a) the flow velocity and (b) the pressure rise at the tip of the probe. The air temperature and pressure in the duct are 352k and 98 kPa, respectively
solution
In this question, we are asked to calculate the flow velocity and the pressure rise at the tip of probe
please check attachment for complete solution and step by step explanation