1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
s2008m [1.1K]
4 years ago
8

Calculate the convective heat-transfer coefficient for water flowing in a round pipe with an inner diameter of 3.0 cm. The water

flow rate is 2 L/s and the water temperature is 30 °C
Engineering
1 answer:
olasank [31]4 years ago
6 0

Answer:

h = 10,349.06 W/m^2 K

Explanation:

Given data:

Inner diameter = 3.0 cm

flow rate  = 2 L/s

water temperature 30 degree celcius

Q = A\times V

2\times 10^{-3} m^3 = \frac{\pi}{4} \times (3\times 10^{-2})^2 \times velocity

V = \frac{20\times 4}{9\times \pi} = 2.83 m/s

Re = \frac{\rho\times V\times D}{\mu}

at 30 degree celcius = \mu = 0.798\times 10^{-3}Pa-s , K  = 0.6154

Re = \frac{10^3\times 2.83\times 3\times 10^{-2}}{0.798\times 10^{-3}}

Re = 106390

So ,this is turbulent flow

Nu = \frac{hL}{k} = 0.0029\times Re^{0.8}\times Pr^{0.3}

Pr= \frac{\mu Cp}{K} = \frac{0.798\times 10^{-3} \times 4180}{0.615} = 5.419

\frac{h\times 0.03}{0.615}  = 0.0029\times (1.061\times 10^5)^{0.8}\times 5.419^{0.3}

SOLVING FOR H

WE GET

h = 10,349.06 W/m^2 K

You might be interested in
Who is/are the founder/founders of transistor? ​
den301095 [7]

Answer:

William Shockley, Walter Houser Brattain and John Bardeen.

Explanation:

It was built in 1947 and they won the novel peace prize in 1956

7 0
3 years ago
Read 2 more answers
Plzzzz helppp design process in order
MA_775_DIABLO [31]

Answer:

generate

define

present

evaluate

develop

construct and test

7 0
3 years ago
A lake has a carrying capacity of 10,000 fish. At the current level of fishing, 2,000 fish per year are taken with the catch uni
arlik [135]

Answer:

The population size would be p' = 5000

The yield would be    MaxYield = 2082 \ fishes \ per \ year

Explanation:

So in this problem we are going to be examining the application of a  population dynamics a fishing pond and stock fishing and objective would be to obtain the maximum sustainable yield and and the population of the fish at the obtained maximum sustainable yield,  so basically we would be applying an engineering solution to fishing

 

    So the current  yield which is mathematically represented as

                               \frac{dN}{dt} =   \frac{2000}{1 \ year }

 Where dN is the change in the number of fish

            and dt is the change in time

So in order to obtain the solution we need to obtain the  rate of growth

    For this we would be making use of the growth rate equation which is

                                      r = \frac{[\frac{dN}{dt}] }{N[1-\frac{N}{K} ]}

  Where N is the population of the fish which is given as 4,000 fishes

          and  K is the carrying capacity which is given as 10,000 fishes

             r is the growth rate

        Substituting these values into the equation

                              r = \frac{[\frac{2000}{year}] }{4000[1-\frac{4000}{10,000} ]}  =0.833

The maximum sustainable yield would be dependent on the growth rate an the carrying capacity and this mathematically represented as

                      Max Yield  = \frac{rK}{4} = \frac{(10,000)(0.833)}{4} = 2082 \ fishes \ per \ year

So since the maximum sustainable yield is 2082 then the the population need to be higher than 4,000 so in order to ensure a that this maximum yield the population size denoted by p' would be

                          p' = \frac{K}{2}  = \frac{10,000}{2}  = 5000\ fishes          

7 0
4 years ago
Read 2 more answers
What major advancement in machine tools occurred in the 1970s and what benefits did it provide? describe in your own words.
mixer [17]

Answer:

I'm just a seventh grader

4 0
3 years ago
Read 2 more answers
4. The instant the ignition switch is turned to the start position,
geniusboy [140]

Answer:

D. Both pull-in and hold-in windings are energized.

Explanation:

The instant the ignition switch is turned to the start position, "Both pull-in and hold-in windings are energized." This is because the moment the ignition switch is turned to the start position, voltage passes through to the S terminal of the solenoid.

The hold-in winding is attached to the case of the solenoid. Similarly, the pull-in winding is also attached to the starter motor. Thereby, the current will move across both windings by getting energized to generate a strong magnetic field.

4 0
3 years ago
Other questions:
  • A mysterious device found in a forgotten laboratory accumulates charge at a rate specified by the expression gm = 9 - 10tC from
    13·1 answer
  • I dont undertand this coding problem (Java):
    8·1 answer
  • What the Best describes the purpose of the occupational safety and health administración OSHA
    12·1 answer
  • An inverting amplifier with +11 V supply voltages normally has a sinusoidal output of 10 Vpp. When checking the circuit with an
    11·1 answer
  • A heat engine operates between 2 reservoirs at TH and 18oC. The heat engine receives 17,000 kJ/h from the high temperature reser
    10·1 answer
  • What is the role of the architects in modern development​
    15·1 answer
  • two cars travel on a straight road from the point. A to point B both cars accelerate to their maximum speed and then continue at
    10·1 answer
  • I will mark brainliest.
    6·2 answers
  • Travel Planning or Destination Planning will help make your travel more efficient, and not necessary a risk reduction plan as yo
    10·2 answers
  • The ______ number of a flow is defined as the ratio of the speed of flow to the speed of sound in the flowing fluid.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!