Answer:
211.63 g.
Explanation:
- Particles could refer to atoms, molecules, formula units.
- <em>Knowing that every one mole of a substance contains Avogadro's no. of molecules (NA = 6.022 x 10²³).</em>
<em><u>Using cross multiplication: </u></em>
1.0 mole → 6.022 x 10²³ molecules.
??? mole → 8.95 x 10²³ molecules.
- The no. of moles of magnesium acetate = (8.95 x 10²³ molecules) (1.0 mole) / (6.022 x 10²³ molecules) = 1.486 mol.
∴ The grams of magnesium acetate are in 8.95 x 10²³ formula units = n x molar mass = (1.486 mol)(142.394 g/mol) = 211.63 g.
Solution:
After the reaction of mixture is worked-up Washing three times the organic with sodium carbonate helps to decrease the solubility of the organic layer into the aqueous layer. This allows the organic layer to be separated more easily.
And then the reaction washed by saturated NACL we have The bulk of the water can often be removed by shaking or "washing" the organic layer with saturated aqueous sodium chloride (otherwise known as brine). The salt water works to pull the water from the organic layer to the water layer.
In a pack of CaCl2 and H2O, hydrolysis of Ca+2 will occur
This will result in formation of Ca(OH)2.
The reaction is exothermic in nature
so the balanced thermo-chemical equation will be
CaCl2(aq) + H2O (l) ---> Ca(OH)2 + 2HCl + Heat
In a pack of NH4NO3 and H2O hydrolysis of NH4+ will occur as
NH4NO3 (aq) + H2O(l) + Heat ---> NH4OH(aq) + HNO3 (aq)
It is an endothermic reaction
Answer:
12.33 cal/sec
Explanation:
As we know,
1 Kcal = 1000 cal
So,
0.74 Kcal = X cal
Solving for X,
X = (0.74 Kcal × 1000 cal) ÷ 1 Kcal
X = 740 cal
Also we know that,
1 Minute = 60 Seconds
Therefore, in order to derive cal/sec unit replace 0.74 Kcal by 740 cal and 1 min by 60 sec in given unit as,
= 740 cal / 60 sec
= 12.33 cal/sec
For the answer to the question above asking w<span>hich of the following would likely form a heterogeneous mixture?
The answer would be</span> <span>sand and water
other choices like
,baking soda salt and sugar are soluble in water and form homogeneous solution</span>