<u>Answer:</u> The new pressure will be 101.46 kPa.
<u>Explanation:</u>
To calculate the new pressure, we use the equation given by Gay-Lussac Law. This law states that pressure is directly proportional to the temperature of the gas at constant volume.
The equation given by this law is:

where,
are initial pressure and temperature.
are final pressure and temperature.
We are given:
By using conversion factor: 

Putting values in above equation, we get:

Hence, the new pressure will be 101.46 kPa.
Explanation:
a) when zinc burnt in oxygen.
2Zn + O2 -----∆-----> 2ZnO(black residue)
b) when carbon burnt in oxygen.
C+O2----∆---> CO2.
c) when sulphur burnt in oxygen.
S+O2-----∆-----> SO2.
d) when Calcium burnt in oxygen.
2Ca+O2-----∆-----> 2CaO(black residue)
e) when Magnesium burnt in oxygen.
2Mg+O2-----∆----> 2MgO.
f) when sodium burnt in oxygen.
4Na+O2----∆-----> 2Na2O.
hope all these reactions help you.
<u>Answer:</u> The entropy change of the ethyl acetate is 133. J/K
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of ethyl acetate = 398 g
Molar mass of ethyl acetate = 88.11 g/mol
Putting values in above equation, we get:

To calculate the entropy change for different phase at same temperature, we use the equation:

where,
= Entropy change = ?
n = moles of ethyl acetate = 4.52 moles
= enthalpy of fusion = 10.5 kJ/mol = 10500 J/mol (Conversion factor: 1 kJ = 1000 J)
T = temperature of the system = ![84.0^oC=[84+273]K=357K](https://tex.z-dn.net/?f=84.0%5EoC%3D%5B84%2B273%5DK%3D357K)
Putting values in above equation, we get:

Hence, the entropy change of the ethyl acetate is 133. J/K
Answer:
CH4 + 2 O2 - - - > CO2 + 2 H2O
Explanation:
hope this helps,
you can check by adding all the numbers on both sides
please mark it